Source code for mhkit.dolfyn.adp.turbulence

import numpy as np
import xarray as xr
import warnings

from ..velocity import VelBinner
from ..rotate.base import calc_tilt


def _diffz_first(dat, z):
    """
    Newton's Method first difference.

    Parameters
    ----------
    dat : array-like
      1 dimensional vector to be differentiated
    z : array-like
      Vertical dimension to differentiate across

    Returns
    -------
    out : array-like
      Numerically-derived derivative of `dat`
    """

    return np.diff(dat, axis=0) / (np.diff(z)[:, None])


def _diffz_centered(dat, z):
    """
    Newton's Method centered difference.

    Parameters
    ----------
    dat : array-like
      1 dimensional vector to be differentiated
    z : array-like
      Vertical dimension to differentiate across

    Returns
    -------
    out : array-like
      Numerically-derived derivative of `dat`

    Notes
    -----
    Want top - bottom here: (u_x+1 - u_x-1)/dx
    Can use 2*np.diff b/c depth bin size never changes
    """

    return (dat[2:] - dat[:-2]) / (2 * np.diff(z)[1:, None])


def _diffz_centered_extended(dat, z):
    """
    Extended centered difference method.

    Parameters
    ----------
    dat : array-like
      1 dimensional vector to be differentiated
    z : array-like
      Vertical dimension to differentiate across

    Returns
    -------
    out : array-like
      Numerically-derived derivative of `dat`

    Notes
    -----
    Top - bottom centered difference with endpoints determined
    with a first difference. Ensures the output array is the
    same size as the input array.
    """

    out = np.concatenate(
        (
            _diffz_first(dat[:2], z[:2]),
            _diffz_centered(dat, z),
            _diffz_first(dat[-2:], z[-2:]),
        )
    )
    return out


[docs] class ADPBinner(VelBinner): def __init__( self, n_bin, fs, n_fft=None, n_fft_coh=None, noise=None, orientation="up", diff_style="centered_extended", ): """ A class for calculating turbulence statistics from ADCP measurements. Parameters ---------- n_bin : int Number of data points to include in a 'bin' (ensemble) fs : int Instrument sampling frequency in Hz n_fft : int Number of data points to use for fft (`n_fft`<=`n_bin`). Default = `n_fft`=`n_bin` n_fft_coh : int Number of data points to use for coherence and cross-spectra ffts. Default = `n_fft_coh`=`n_fft` noise : float or array-like Instrument noise level in same units as velocity. Typically found from `adp.turbulence.doppler_noise_level`. Default = None orientation : str Instrument's orientation, either 'up' or 'down'. Default = 'up' diff_style : str Style of numerical differentiation using Newton's Method. Either 'first' (first difference), 'centered' (centered difference), or 'centered_extended' (centered difference with first and last points extended using a first difference). Default = 'centered_extended' """ VelBinner.__init__(self, n_bin, fs, n_fft, n_fft_coh, noise) self.diff_style = diff_style self.orientation = orientation def _diff_func(self, vel, u, orientation): """Applies the chosen style of numerical differentiation to velocity data. This method calculates the derivative of the velocity data 'vel' with respect to the 'range' using the differentiation style specified in 'self.diff_style'. The styles can be 'first' for first difference, 'centered' for centered difference, and 'centered_extended' for centered difference with first and last points extended using a first difference. Parameters ---------- vel : xarray.DataArray Velocity data with dimensions 'range' and 'time'. u : str or int Velocity component Returns ------- out : numpy.ndarray The calculated derivative of the velocity data. """ if not orientation: orientation = self.orientation sign = 1 if orientation == "down": sign *= -1 if self.diff_style == "first": out = _diffz_first(vel[u].values, vel["range"].values) return sign * out, vel.range[1:] elif self.diff_style == "centered": out = _diffz_centered(vel[u].values, vel["range"].values) return sign * out, vel.range[1:-1] elif self.diff_style == "centered_extended": out = _diffz_centered_extended(vel[u].values, vel["range"].values) return sign * out, vel.range
[docs] def dudz(self, vel, orientation=None): """ The shear in the first velocity component (:math:`du/dz`). Parameters ---------- vel : xarray.DataArray ADCP raw velocity orientation : str Direction ADCP is facing ('up' or 'down'). Default = ADPBinner.orientation Returns ------- dudz: xarray.DataArray Vertical shear in the X-direction Notes ----- The derivative direction is along the profiler's :math:`z` coordinate (:math:`dz` is actually `diff(self['range'])`), not necessarily the 'true vertical' direction. """ dudz, rng = self._diff_func(vel, 0, orientation) return xr.DataArray( dudz, coords=[rng, vel.time], dims=["range", "time"], attrs={"units": "s-1", "long_name": "Shear in X-direction"}, )
[docs] def dvdz(self, vel, orientation=None): """ The shear in the second velocity component (:math:`dv/dz`). Parameters ---------- vel : xarray.DataArray ADCP raw velocity orientation : str Direction ADCP is facing ('up' or 'down'). Default = ADPBinner.orientation Returns ------- dvdz: xarray.DataArray Vertical shear in the Y-direction Notes ----- The derivative direction is along the profiler's :math:`z` coordinate (:math:`dz` is actually `diff(self['range'])`), not necessarily the 'true vertical' direction. """ dvdz, rng = self._diff_func(vel, 1, orientation) return xr.DataArray( dvdz, coords=[rng, vel.time], dims=["range", "time"], attrs={"units": "s-1", "long_name": "Shear in Y-direction"}, )
[docs] def dwdz(self, vel, orientation=None): """ The shear in the third velocity component (:math:`dw/dz`). Parameters ---------- vel : xarray.DataArray ADCP raw velocity orientation : str Direction ADCP is facing ('up' or 'down'). Default = ADPBinner.orientation Returns ------- dwdz: xarray.DataArray Vertical shear in the Z-direction Notes ----- The derivative direction is along the profiler's :math:`z` coordinate (:math:`dz` is actually `diff(self['range'])`), not necessarily the 'true vertical' direction. """ dwdz, rng = self._diff_func(vel, 2, orientation) return xr.DataArray( dwdz, coords=[rng, vel.time], dims=["range", "time"], attrs={"units": "s-1", "long_name": "Shear in Z-direction"}, )
[docs] def shear_squared(self, vel): """ The horizontal shear squared. Parameters ---------- vel : xarray.DataArray ADCP raw velocity Returns ------- out: xarray.DataArray Shear squared in 1/s^2 Notes ----- This is actually :math:`(du/dz)^{2} + (dv/dz)^{2}`. So, if those variables are not actually vertical derivatives of the horizontal velocity, then this is not the 'horizontal shear squared'. """ shear2 = self.dudz(vel) ** 2 + self.dvdz(vel) ** 2 shear2.attrs["units"] = "s-2" shear2.attrs["long_name"] = "Horizontal Shear Squared" return shear2
[docs] def doppler_noise_level(self, psd, pct_fN=0.8): """ Calculate bias (in units of velocity) due to Doppler noise using the noise floor of the velocity spectra. Parameters ---------- psd : xarray.DataArray (time, freq) The velocity spectra from a single depth bin (range), typically in the mid-water range pct_fN : float Percent of Nyquist frequency to calculate characeristic frequency Returns ------- doppler_noise (xarray.DataArray): Doppler noise level in units of m/s Notes ----- Approximates bias from .. math:: \\sigma^{2}_{noise} = N * f_{c} where :math:`\\sigma_{noise}` is the bias due to Doppler noise, :math:`N` is the constant variance or spectral density, and :math:`f_{c}` is the characteristic frequency. The characteristic frequency is then found as .. math:: f_{c} = pct_fN * (f_{s}/2) where :math:`f_{s}/2` is the Nyquist frequency. Richard, Jean-Baptiste, et al. "Method for identification of Doppler noise levels in turbulent flow measurements dedicated to tidal energy." International Journal of Marine Energy 3 (2013): 52-64. ThiƩbaut, Maxime, et al. "Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary." Renewable Energy 195 (2022): 252-262. """ if not isinstance(psd, xr.DataArray): raise TypeError("`psd` must be an instance of `xarray.DataArray`.") if not isinstance(pct_fN, float) or not 0 <= pct_fN <= 1: raise ValueError("`pct_fN` must be a float within the range [0, 1].") if len(psd.shape) != 2: raise Exception("PSD should be 2-dimensional (time, frequency)") # Characteristic frequency set to 80% of Nyquist frequency fN = self.fs / 2 fc = pct_fN * fN # Get units right if psd.freq.units == "Hz": f_range = slice(fc, fN) else: f_range = slice(2 * np.pi * fc, 2 * np.pi * fN) # Noise floor N2 = psd.sel(freq=f_range) * psd.freq.sel(freq=f_range) noise_level = np.sqrt(N2.mean(dim="freq")) time_coord = psd.dims[0] # no reason this shouldn't be time or time_b5 return xr.DataArray( noise_level.values.astype("float32"), coords={time_coord: psd.coords[time_coord]}, attrs={ "units": "m s-1", "long_name": "Doppler Noise Level", "description": "Doppler noise level calculated " "from PSD white noise", }, )
def _stress_func_warnings(self, ds, beam_angle, noise, tilt_thresh): """ Performs a series of checks and raises warnings for ADCP stress calculations. This method checks several conditions relevant for ADCP stress calculations and raises warnings if these conditions are not met. It checks if the beam angle is defined, if the instrument's coordinate system is aligned with the principal flow directions, if the tilt is above a threshold, if the noise level is specified, and if the data set is in the 'beam' coordinate system. Parameters ---------- ds : xarray.Dataset Raw dataset in beam coordinates beam_angle : int ADCP beam angle in units of degrees. Default = ``ds.attrs['beam_angle']`` noise : int or xarray.DataArray (time) Doppler noise level in units of m/s tilt_thresh: numeric Angle threshold beyond which violates a small angle assumption Returns ------- b_angle : float If 'beam_angle' was None, it tries to find it in 'ds'. noise : float If 'noise' was None, it is set to 0. """ # Error 1. Beam Angle b_angle = getattr(ds, "beam_angle", beam_angle) if b_angle is None: raise Exception( " Beam angle not found in dataset and no beam angle supplied." ) # Warning 1. Memo warnings.warn( " The beam-variance algorithms assume the instrument's " "(XYZ) coordinate system is aligned with the principal " "flow directions." ) # Warning 2. Check tilt tilt_mask = calc_tilt(ds["pitch"], ds["roll"]) > tilt_thresh if sum(tilt_mask): pct_above_thresh = round(sum(tilt_mask) / len(tilt_mask) * 100, 2) warnings.warn( f" {pct_above_thresh} % of measurements have a tilt " f"greater than {tilt_thresh} degrees." ) # Warning 3. Noise level of instrument is important considering 50 % of variance # in ADCP data can be noise if noise is None: warnings.warn( ' No "noise" input supplied. Consider calculating "noise" ' "using `calc_doppler_noise`" ) noise = 0 # Warning 4. Likely not in beam coordinates after running a typical analysis workflow if "beam" not in ds.coord_sys: warnings.warn( " Raw dataset must be in the 'beam' coordinate system. " "Rotating raw dataset..." ) ds.velds.rotate2("beam") return b_angle, noise def _check_orientation(self, ds, orientation, beam5=False): """ Determines the beam order for the beam-stress rotation algorithm based on the instrument orientation. Note: Stacey defines the beams for down-looking Workhorse ADCPs. According to the workhorse coordinate transformation documentation, the instrument's: x-axis points from beam 1 to 2, and y-axis points from beam 4 to 3. Nortek Signature x-axis points from beam 3 to 1 y-axis points from beam 2 to 4 Parameters ---------- ds : xarray.Dataset Raw dataset in beam coordinates orientation : str The orientation of the instrument, either 'up' or 'down'. If None, the orientation will be retrieved from the dataset or the instance's default orientation. beam5 : bool A flag indicating whether a fifth beam is present. If True, the number 4 will be appended to the beam order. Default = False Returns ------- beams : list of int Beam order. phi2 : float, optional The mean of the roll values in radians. Only returned if 'beam5' is True. phi3 : float, optional The mean of the pitch values in radians, negated for Nortek instruments. Only returned if 'beam5' is True. Stacey, Mark T., Stephen G. Monismith, and Jon R. Burau. "Measurements of Reynolds stress profiles in unstratified tidal flow." Journal of Geophysical Research: Oceans 104.C5 (1999): 10933-10949. """ if orientation is None: orientation = getattr(ds, "orientation", self.orientation) if "TRDI" in ds.inst_make: phi2 = np.deg2rad(self.mean(ds["pitch"].values)) phi3 = np.deg2rad(self.mean(ds["roll"].values)) if "down" in orientation.lower(): # this order is correct given the note above beams = [0, 1, 2, 3] # for down-facing RDIs elif "up" in orientation.lower(): beams = [0, 1, 3, 2] # for up-facing RDIs else: raise Exception( "Please provide instrument orientation ['up' or 'down']" ) # For Nortek Signatures elif ("Signature" in ds.inst_model) or ("AD2CP" in ds.inst_model): phi2 = np.deg2rad(self.mean(ds["roll"].values)) phi3 = -np.deg2rad(self.mean(ds["pitch"].values)) if "down" in orientation.lower(): beams = [2, 0, 3, 1] # for down-facing Norteks elif "up" in orientation.lower(): beams = [0, 2, 3, 1] # for up-facing Norteks else: raise Exception( "Please provide instrument orientation ['up' or 'down']" ) if beam5: beams.append(4) return beams, phi2, phi3 else: return beams def _beam_variance(self, ds, time, noise, beam_order, n_beams): """ Calculates the variance of the along-beam velocities and then subtracts noise from the result. Parameters ---------- ds : xarray.Dataset Raw dataset in beam coordinates time : xarray.DataArray Ensemble-averaged time coordinate noise : int or xarray.DataArray (time) Doppler noise level in units of m/s beam_order : list of int Beam order in pairs, per manufacturer and orientation n_beams : int Number of beams Returns ------- bp2_ : xarray.DataArray Enxemble-averaged along-beam velocity variance, written "beam-velocity prime squared bar" in units of m^2/s^2 """ # Concatenate 5th beam velocity if need be if n_beams == 4: beam_vel = ds["vel"].values elif n_beams == 5: beam_vel = np.concatenate( (ds["vel"].values, ds["vel_b5"].values[None, ...]) ) # Calculate along-beam velocity prime squared bar bp2_ = np.empty((n_beams, len(ds["range"]), len(time))) * np.nan for i, beam in enumerate(beam_order): bp2_[i] = np.nanvar(self.reshape(beam_vel[beam]), axis=-1) # Remove doppler_noise if type(noise) == type(ds["vel"]): noise = noise.values bp2_ -= noise**2 return bp2_
[docs] def reynolds_stress_4beam(self, ds, noise=None, orientation=None, beam_angle=None): """ Calculate the specific Reynolds shear stresses from the covariance of along-beam velocity measurements (:math:`\\overline{u'w'}`, :math:`\\overline{v'w'}`). Parameters ---------- ds : xarray.Dataset Raw dataset in beam coordinates noise : int or xarray.DataArray (time) Doppler noise level in units of m/s orientation : str Direction ADCP is facing ('up' or 'down') Default = ``ds.attrs['orientation']`` beam_angle : int ADCP beam angle in units of degrees Default = ``ds.attrs['beam_angle']`` Returns ------- stress_vec : xarray.DataArray(s) Stress vector with :math:`\\overline{u'w'}` and :math:`\\overline{v'w'}` components Notes ----- Assumes zero mean pitch and roll. Assumes ADCP instrument coordinate system is aligned with principal flow directions. """ # Run through warnings b_angle, noise = self._stress_func_warnings( ds, beam_angle, noise, tilt_thresh=5 ) # Fetch beam order beam_order = self._check_orientation(ds, orientation, beam5=False) # Calculate beam variance and subtract noise time = self.mean(ds["time"].values) bp2_ = self._beam_variance(ds, time, noise, beam_order, n_beams=4) # Run stress calculations denm = 4 * np.sin(np.deg2rad(b_angle)) * np.cos(np.deg2rad(b_angle)) upwp_ = (bp2_[0] - bp2_[1]) / denm vpwp_ = (bp2_[2] - bp2_[3]) / denm return xr.DataArray( np.stack([upwp_ * np.nan, upwp_, vpwp_]).astype("float32"), coords={ "tau": ["upvp_", "upwp_", "vpwp_"], "range": ds["range"], "time": time, }, attrs={"units": "m2 s-2", "long_name": "Specific Reynolds Stress Vector"}, )
[docs] def stress_tensor_5beam( self, ds, noise=None, orientation=None, beam_angle=None, tke_only=False ): """ Calculate the specific Reynolds stresses from the covariance of along-beam velocity measurements (:math:`\\overline{u'u'}`, :math:`\\overline{v'v'}`, :math:`\\overline{w'w'}`, :math:`\\overline{u'w'}`, :math:`\\overline{v'w'}`). Parameters ---------- ds : xarray.Dataset Raw dataset in beam coordinates noise : int or xarray.DataArray ('time') Doppler noise level in units of m/s. Default = 0 orientation : str Direction ADCP is facing ('up' or 'down'). Default = ``ds.attrs['orientation']`` beam_angle : int ADCP beam angle in units of degrees. Default = ``ds.attrs['beam_angle']`` tke_only : bool If true, only calculates TKE components. Default = False Returns ------- tke_vec(, stress_vec) : xarray.DataArray or tuple[xarray.DataArray] If `tke_only` is set to False, function returns `tke_vec` and `stress_vec`. Otherwise only `tke_vec` is returned Notes ----- Assumes small-angle approximation is applicable. Assumes ADCP instrument coordinate system is aligned with principal flow directions, i.e., :math:`u'`, :math:`v'` and :math:`w'` are aligned to the instrument's (XYZ) frame of reference. The stress equations here utilize :math:`\\overline{u'v'}` to account for small variations in pitch and roll. :math:`\\overline{u'v'}` cannot be directly calculated by a 5-beam ADCP, (there are only 5 beams so only 5 unknowns can be found) so it is approximated by the covariance of :math:`u` and :math:`v`. This approximation assumes :math:`\\overline{u'v'}` is similar in magnitude to the other stress components. Dewey, R., and S. Stringer. "Reynolds stresses and turbulent kinetic energy estimates from various ADCP beam configurations: Theory." J. of Phys. Ocean (2007): 1-35. Guerra, Maricarmen, and Jim Thomson. "Turbulence measurements from five-beam acoustic Doppler current profilers." Journal of Atmospheric and Oceanic Technology 34.6 (2017): 1267-1284. """ # Check that beam 5 velocity exists if "vel_b5" not in ds.data_vars: raise Exception("Must have 5th beam data to use this function.") # Run through warnings b_angle, noise = self._stress_func_warnings( ds, beam_angle, noise, tilt_thresh=5 ) # Fetch beam order beam_order, phi2, phi3 = self._check_orientation(ds, orientation, beam5=True) # Calculate beam variance and subtract noise time = self.mean(ds["time"].values) bp2_ = self._beam_variance(ds, time, noise, beam_order, n_beams=5) # Run tke and stress calculations th = np.deg2rad(b_angle) sin = np.sin cos = np.cos denm = -4 * sin(th) ** 6 * cos(th) ** 2 upup_ = ( -2 * sin(th) ** 4 * cos(th) ** 2 * (bp2_[1] + bp2_[0] - 2 * cos(th) ** 2 * bp2_[4]) + 2 * sin(th) ** 5 * cos(th) * phi3 * (bp2_[1] - bp2_[0]) ) / denm vpvp_ = ( -2 * sin(th) ** 4 * cos(th) ** 2 * (bp2_[3] + bp2_[0] - 2 * cos(th) ** 2 * bp2_[4]) - 2 * sin(th) ** 4 * cos(th) ** 2 * phi3 * (bp2_[1] - bp2_[0]) + 2 * sin(th) ** 3 * cos(th) ** 3 * phi3 * (bp2_[1] - bp2_[0]) - 2 * sin(th) ** 5 * cos(th) * phi2 * (bp2_[3] - bp2_[2]) ) / denm wpwp_ = ( -2 * sin(th) ** 5 * cos(th) * ( bp2_[1] - bp2_[0] + 2 * sin(th) ** 5 * cos(th) * phi2 * (bp2_[3] - bp2_[2]) - 4 * sin(th) ** 6 * cos(th) ** 2 * bp2_[4] ) ) / denm tke_vec = xr.DataArray( np.stack([upup_, vpvp_, wpwp_]).astype("float32"), coords={ "tke": ["upup_", "vpvp_", "wpwp_"], "range": ds["range"], "time": time, }, attrs={ "units": "m2 s-2", "long_name": "TKE Vector", "standard_name": "specific_turbulent_kinetic_energy_of_sea_water", }, ) if tke_only: return tke_vec else: # Guerra Thomson calculate u'v' bar from from the covariance of u' and v' ds.velds.rotate2("inst") vel = self.detrend(ds.vel.values) upvp_ = np.nanmean(vel[0] * vel[1], axis=-1, dtype=np.float64).astype( np.float32 ) upwp_ = ( sin(th) ** 5 * cos(th) * (bp2_[1] - bp2_[0]) + 2 * sin(th) ** 4 * cos(th) * 2 * phi3 * (bp2_[1] + bp2_[0]) - 4 * sin(th) ** 4 * cos(th) * 2 * phi3 * bp2_[4] - 4 * sin(th) ** 6 * cos(th) * 2 * phi2 * upvp_ ) / denm vpwp_ = ( sin(th) ** 5 * cos(th) * (bp2_[3] - bp2_[2]) - 2 * sin(th) ** 4 * cos(th) * 2 * phi2 * (bp2_[3] + bp2_[2]) + 4 * sin(th) ** 4 * cos(th) * 2 * phi2 * bp2_[4] + 4 * sin(th) ** 6 * cos(th) * 2 * phi3 * upvp_ ) / denm stress_vec = xr.DataArray( np.stack([upvp_, upwp_, vpwp_]).astype("float32"), coords={ "tau": ["upvp_", "upwp_", "vpwp_"], "range": ds["range"], "time": time, }, attrs={ "units": "m2 s-2", "long_name": "Specific Reynolds Stress Vector", }, ) return tke_vec, stress_vec
[docs] def check_turbulence_cascade_slope(self, psd, freq_range=[0.2, 0.4]): """ This function calculates the slope of the PSD, the power spectra of velocity, within the given frequency range. The purpose of this function is to check that the region of the PSD containing the isotropic turbulence cascade decreases at a rate of :math:`f^{-5/3}`. Parameters ---------- psd : xarray.DataArray ([[range,] time,] freq) The power spectral density (1D, 2D or 3D) freq_range : iterable(2) The range over which the isotropic turbulence cascade occurs, in units of the psd frequency vector (Hz or rad/s). Default = [6.28, 12.57] Returns ------- (m, b): tuple (slope, y-intercept) A tuple containing the coefficients of the log-adjusted linear regression between PSD and frequency Notes ----- Calculates slope based on the `standard` formula for dissipation: .. math:: S(k) = \\alpha \\epsilon^{2/3} k^{-5/3} + N The slope of the isotropic turbulence cascade, which should be equal to :math:`k^{-5/3}` or :math:`f^{-5/3}`, where k and f are the wavenumber and frequency vectors, is estimated using linear regression with a log transformation: .. math:: log10(y) = m*log10(x) + b Which is equivalent to .. math:: y = 10^{b} x^{m} Where :math:`y` is S(k) or S(f), :math:`x` is k or f, :math:`m` is the slope (ideally -5/3), and :math:`10^{b}` is the intercept of :math:`y` at :math:`x^{m}=1'. """ if not isinstance(psd, xr.DataArray): raise TypeError("`psd` must be an instance of `xarray.DataArray`.") if not hasattr(freq_range, "__iter__") or len(freq_range) != 2: raise ValueError("`freq_range` must be an iterable of length 2.") idx = np.where((freq_range[0] < psd.freq) & (psd.freq < freq_range[1])) idx = idx[0] x = np.log10(psd["freq"].isel(freq=idx)) y = np.log10(psd.isel(freq=idx)) y_bar = y.mean("freq") x_bar = x.mean("freq") # using the formula to calculate the slope and intercept n = np.sum((x - x_bar) * (y - y_bar), axis=0) d = np.sum((x - x_bar) ** 2, axis=0) m = n / d b = y_bar - m * x_bar return m, b
[docs] def dissipation_rate_LT83( self, psd, U_mag, freq_range=[0.2, 0.4], k_constant=0.67, noise=None ): """ Calculate the TKE dissipation rate from the velocity spectra. Parameters ---------- psd : xarray.DataArray (time, freq) The power spectral density from the vertical beam and depth bin (range) U_mag : xarray.DataArray (time) The bin-averaged horizontal velocity (a.k.a. speed) from a single depth bin (range) (i.e., computed using :func:`mhkit.dolfyn.velocity.Velocity.U_mag`) f_range : iterable(2) The range over which to integrate/average the spectrum, in units of the psd frequency vector (Hz or rad/s) k_constant : float or iterable(3) Kolmogorov Constant (\\alpha in Notes section below) to use. Default \\alpha is 0.67. noise : float or array-like Instrument noise level in same units as velocity. Typically found from :func:`doppler_noise_level <mhkit.dolfyn.adp.turbulence.ADPBinner.doppler_noise_level>` Default = None Returns ------- dissipation_rate : xarray.DataArray (...,n_time) Turbulent kinetic energy dissipation rate Notes ----- This uses the `standard` formula for dissipation: .. math:: S(k) = \\alpha \\epsilon^{2/3} k^{-5/3} + N where :math:`\\alpha` is the Kolmogorov constant (0.67 for vertical direction), `k` is wavenumber, `S(k)` is the turbulent kinetic energy spectrum, and `N' is the doppler noise level associated with the TKE spectrum. With :math:`k \\rightarrow \\omega / U`, then -- to preserve variance -- :math:`S(k) = U S(\\omega)`, and so this becomes: .. math:: S(\\omega) = \\alpha \\epsilon^{2/3} \\omega^{-5/3} U^{2/3} + N With :math:`k \\rightarrow (2\\pi f) / U`, then .. math:: S(\\omega) = \\alpha \\epsilon^{2/3} f^{-5/3} (U/(2*\\pi))^{2/3} + N LT83 : Lumley and Terray, "Kinematics of turbulence convected by a random wave field". JPO, 1983, vol13, pp2000-2007. """ if not isinstance(psd, xr.DataArray): raise TypeError("`psd` must be an instance of `xarray.DataArray`.") if len(psd.shape) != 2: raise Exception("`psd` should be 2-dimensional (time, frequency)") if len(U_mag.shape) != 1: raise Exception("U_mag should be 1-dimensional (time)") if not hasattr(freq_range, "__iter__") or len(freq_range) != 2: raise ValueError("`freq_range` must be an iterable of length 2.") if np.size(k_constant) != 1: raise ValueError("`k_constant` should be a single value.") if noise is not None: if np.shape(noise)[0] != np.shape(psd)[0]: raise Exception("Noise should have same first dimension as `psd`") else: noise = np.array(0) # Noise subtraction from binner.TimeBinner._psd_base psd = psd.copy() if noise is not None: psd -= noise**2 / (self.fs / 2) psd = psd.where(psd > 0, np.min(np.abs(psd)) / 100) freq = psd.freq idx = np.where((freq_range[0] < freq) & (freq < freq_range[1])) idx = idx[0] # Set the correct magnitude whether the frequency is in Hz or rad/s if freq.units == "Hz": U = U_mag / (2 * np.pi) else: U = U_mag # Use the transverse value derived from the Kolmogorov constant a = k_constant # Calculate dissipation out = (psd[:, idx] * freq[idx] ** (5 / 3) / a).mean(axis=-1) ** ( 3 / 2 ) / U.values return xr.DataArray( out.astype("float32"), attrs={ "units": "m2 s-3", "long_name": "TKE Dissipation Rate", "standard_name": "specific_turbulent_kinetic_energy_dissipation_in_sea_water", "description": "TKE dissipation rate calculated using " "the method from Lumley and Terray, 1983", }, )
[docs] def dissipation_rate_SF(self, vel_raw, r_range=[1, 5]): """ Calculate TKE dissipation rate from ADCP along-beam velocity using the "structure function" (SF) method. Parameters ---------- vel_raw : xarray.DataArray The raw beam velocity data (one beam, last dimension time) upon which to perform the SF technique. r_range : numeric, Range of r in [m] to calc dissipation across. Low end of range should be bin size, upper end of range is limited to the length of largest eddies in the inertial subrange. Default = [1, 5] Returns ------- dissipation_rate : xarray.DataArray (range, time) Dissipation rate estimated from the structure function noise : xarray.DataArray (range, time) Noise offset estimated from the structure function at r = 0 structure_function : xarray.DataArray (range, r, time) Structure function D(z,r) Notes ----- Dissipation rate outputted by this function is only valid if the isotropic turbulence cascade can be seen in the TKE spectra. Velocity data must be in beam coordinates and should be cleaned of surface interference. This method calculates the 2nd order structure function: .. math:: D(z,r) = [(u'(z) - u`(z+r))^2] where `u'` is the velocity fluctuation `z` is the depth bin, `r` is the separation between depth bins, and [] denotes a time average (size 'self.n_bin'). The stucture function can then be used to estimate the dissipation rate: .. math:: D(z,r) = C^2 \\epsilon^{2/3} r^{2/3} + N where `C` is a constant (set to 2.1), `\\epsilon` is the dissipation rate, and `N` is the offset due to noise. Noise is then calculated by .. math:: \\sigma = (N/2)^{1/2} Wiles, et al, "A novel technique for measuring the rate of turbulent dissipation in the marine environment" GRL, 2006, 33, L21608. """ if not isinstance(vel_raw, xr.DataArray): raise TypeError("`vel_raw` must be an instance of `xarray.DataArray`.") if not hasattr(r_range, "__iter__") or len(r_range) != 2: raise ValueError("`r_range` must be an iterable of length 2.") if len(vel_raw.shape) != 2: raise Exception( "Function input must be single beam and in 'beam' coordinate system" ) if "range_b5" in vel_raw.dims: rng = vel_raw["range_b5"] time = self.mean(vel_raw["time_b5"].values) else: rng = vel_raw["range"] time = self.mean(vel_raw["time"].values) # bm shape is [range, ensemble time, 'data within ensemble'] bm = self.demean(vel_raw.values) # take out the ensemble mean e = np.empty(bm.shape[:2], dtype="float32") * np.nan n = np.empty(bm.shape[:2], dtype="float32") * np.nan bin_size = round(np.diff(rng)[0], 3) R = int(r_range[0] / bin_size) r = np.arange(bin_size, r_range[1] + bin_size, bin_size) # D(z,r,time) D = np.zeros((bm.shape[0], r.size, bm.shape[1])) for r_value in r: # the i in d is the index based on r and bin size # bin size index, > 1 i = int(r_value / bin_size) for idx in range(bm.shape[1]): # for each ensemble # subtract the variance of adjacent depth cells d = np.nanmean((bm[:-i, idx, :] - bm[i:, idx, :]) ** 2, axis=-1) # have to insert 0/nan in first bin to match length spaces = np.empty((i,)) spaces[:] = np.nan D[:, i - 1, idx] = np.concatenate((spaces, d)) # find best fit line y = mx + b (aka D(z,r) = A*r^2/3 + N) to solve # epsilon for each depth and ensemble for idx in range(bm.shape[1]): # for each ensemble # start at minimum r_range and work up to surface for i in range(D.shape[1], D.shape[0]): # average ensembles together if not all(np.isnan(D[i, R:, idx])): # if no nan's e[i, idx], n[i, idx] = np.polyfit( r[R:] ** 2 / 3, D[i, R:, idx], deg=1 ) else: e[i, idx], n[i, idx] = np.nan, np.nan # A taken as 2.1, n = y-intercept epsilon = (e / 2.1) ** (3 / 2) noise = np.sqrt(n / 2) epsilon = xr.DataArray( epsilon.astype("float32"), coords={vel_raw.dims[0]: rng, vel_raw.dims[1]: time}, dims=vel_raw.dims, attrs={ "units": "m2 s-3", "long_name": "TKE Dissipation Rate", "standard_name": "specific_turbulent_kinetic_energy_dissipation_in_sea_water", "description": "TKE dissipation rate calculated from the " '"structure function" method from Wiles et al, 2006.', }, ) noise = xr.DataArray( noise.astype("float32"), coords={vel_raw.dims[0]: rng, vel_raw.dims[1]: time}, attrs={ "units": "m s-1", "long_name": "Structure Function Noise Offset", }, ) SF = xr.DataArray( D.astype("float32"), coords={vel_raw.dims[0]: rng, "range_SF": r, vel_raw.dims[1]: time}, attrs={ "units": "m2 s-2", "long_name": "Structure Function D(z,r)", "description": '"Structure function" from Wiles et al, 2006.', }, ) return epsilon, noise, SF
[docs] def friction_velocity(self, ds_avg, upwp_, z_inds=slice(1, 5), H=None): """ Approximate friction velocity from shear stress using a logarithmic profile. Parameters ---------- ds_avg : xarray.Dataset Bin-averaged dataset containing `stress_vec` upwp_ : xarray.DataArray Second component of Reynolds shear stress vector, :math:`\\overline{u'w'}` Ex `ds_avg['stress_vec'].sel(tau='upwp_')` z_inds : slice(int, int) Depth indices to use for profile. Default = slice(1, 5) H : numeric Total water depth. Default = `ds_avg["depth"]` Returns ------- u_star : xarray.DataArray Friction velocity """ if not isinstance(ds_avg, xr.Dataset): raise TypeError("`ds_avg` must be an instance of `xarray.Dataset`.") if not isinstance(upwp_, xr.DataArray): raise TypeError("`upwp_` must be an instance of `xarray.DataArray`.") if not isinstance(z_inds, slice): raise TypeError("`z_inds` must be an instance of `slice(int,int)`.") if not H: H = ds_avg["depth"].values z = ds_avg["range"].values upwp_ = upwp_.values sign = np.nanmean(np.sign(upwp_[z_inds, :]), axis=0) u_star = ( np.nanmean(sign * upwp_[z_inds, :] / (1 - z[z_inds, None] / H), axis=0) ** 0.5 ) return xr.DataArray( u_star.astype("float32"), coords={"time": ds_avg["time"]}, attrs={"units": "m s-1", "long_name": "Friction Velocity"}, )