import numpy as np
import xarray as xr
import warnings
from ..velocity import VelBinner
from ..rotate.base import calc_tilt
def _diffz_first(dat, z):
"""
Newton's Method first difference.
Parameters
----------
dat : array-like
1 dimensional vector to be differentiated
z : array-like
Vertical dimension to differentiate across
Returns
-------
out : array-like
Numerically-derived derivative of `dat`
"""
return np.diff(dat, axis=0) / (np.diff(z)[:, None])
def _diffz_centered(dat, z):
"""
Newton's Method centered difference.
Parameters
----------
dat : array-like
1 dimensional vector to be differentiated
z : array-like
Vertical dimension to differentiate across
Returns
-------
out : array-like
Numerically-derived derivative of `dat`
Notes
-----
Want top - bottom here: (u_x+1 - u_x-1)/dx
Can use 2*np.diff b/c depth bin size never changes
"""
return (dat[2:] - dat[:-2]) / (2 * np.diff(z)[1:, None])
def _diffz_centered_extended(dat, z):
"""
Extended centered difference method.
Parameters
----------
dat : array-like
1 dimensional vector to be differentiated
z : array-like
Vertical dimension to differentiate across
Returns
-------
out : array-like
Numerically-derived derivative of `dat`
Notes
-----
Top - bottom centered difference with endpoints determined
with a first difference. Ensures the output array is the
same size as the input array.
"""
out = np.concatenate(
(
_diffz_first(dat[:2], z[:2]),
_diffz_centered(dat, z),
_diffz_first(dat[-2:], z[-2:]),
)
)
return out
[docs]
class ADPBinner(VelBinner):
def __init__(
self,
n_bin,
fs,
n_fft=None,
n_fft_coh=None,
noise=None,
orientation="up",
diff_style="centered_extended",
):
"""
A class for calculating turbulence statistics from ADCP data
Parameters
----------
n_bin : int
Number of data points to include in a 'bin' (ensemble), not the
number of bins
fs : int
Instrument sampling frequency in Hz
n_fft : int
Number of data points to use for fft (`n_fft`<=`n_bin`).
Default: `n_fft`=`n_bin`
n_fft_coh : int
Number of data points to use for coherence and cross-spectra ffts
Default: `n_fft_coh`=`n_fft`
noise : float or array-like
Instrument noise level in same units as velocity. Typically
found from `adp.turbulence.doppler_noise_level`.
Default: None.
orientation : str, default='up'
Instrument's orientation, either 'up' or 'down'
diff_style : str, default='centered_extended'
Style of numerical differentiation using Newton's Method.
Either 'first' (first difference), 'centered' (centered difference),
or 'centered_extended' (centered difference with first and last points
extended using a first difference).
"""
VelBinner.__init__(self, n_bin, fs, n_fft, n_fft_coh, noise)
self.diff_style = diff_style
self.orientation = orientation
def _diff_func(self, vel, u, orientation):
"""Applies the chosen style of numerical differentiation to velocity data.
This method calculates the derivative of the velocity data 'vel' with respect to the 'range'
using the differentiation style specified in 'self.diff_style'. The styles can be 'first'
for first difference, 'centered' for centered difference, and 'centered_extended' for
centered difference with first and last points extended using a first difference.
Parameters
----------
vel : xarray.DataArray
Velocity data with dimensions 'range' and 'time'.
u : str or int
Velocity component
Returns
-------
out : numpy.ndarray
The calculated derivative of the velocity data.
"""
if not orientation:
orientation = self.orientation
sign = 1
if orientation == "down":
sign *= -1
if self.diff_style == "first":
out = _diffz_first(vel[u].values, vel["range"].values)
return sign * out, vel.range[1:]
elif self.diff_style == "centered":
out = _diffz_centered(vel[u].values, vel["range"].values)
return sign * out, vel.range[1:-1]
elif self.diff_style == "centered_extended":
out = _diffz_centered_extended(vel[u].values, vel["range"].values)
return sign * out, vel.range
[docs]
def dudz(self, vel, orientation=None):
"""
The shear in the first velocity component.
Parameters
----------
vel : xarray.DataArray
ADCP raw velocity
orientation : str, default=ADPBinner.orientation
Direction ADCP is facing ('up' or 'down')
Returns
-------
dudz: xarray.DataArray
Vertical shear in the X-direction
Notes
-----
The derivative direction is along the profiler's 'z'
coordinate ('dz' is actually diff(self['range'])), not necessarily the
'true vertical' direction.
"""
dudz, rng = self._diff_func(vel, 0, orientation)
return xr.DataArray(
dudz,
coords=[rng, vel.time],
dims=["range", "time"],
attrs={"units": "s-1", "long_name": "Shear in X-direction"},
)
[docs]
def dvdz(self, vel, orientation=None):
"""
The shear in the second velocity component.
Parameters
----------
vel : xarray.DataArray
ADCP raw velocity
orientation : str, default=ADPBinner.orientation
Direction ADCP is facing ('up' or 'down')
Returns
-------
dvdz: xarray.DataArray
Vertical shear in the Y-direction
Notes
-----
The derivative direction is along the profiler's 'z'
coordinate ('dz' is actually diff(self['range'])), not necessarily the
'true vertical' direction.
"""
dvdz, rng = self._diff_func(vel, 1, orientation)
return xr.DataArray(
dvdz,
coords=[rng, vel.time],
dims=["range", "time"],
attrs={"units": "s-1", "long_name": "Shear in Y-direction"},
)
[docs]
def dwdz(self, vel, orientation=None):
"""
The shear in the third velocity component.
Parameters
----------
vel : xarray.DataArray
ADCP raw velocity
orientation : str, default=ADPBinner.orientation
Direction ADCP is facing ('up' or 'down')
Returns
-------
dwdz: xarray.DataArray
Vertical shear in the Z-direction
Notes
-----
The derivative direction is along the profiler's 'z'
coordinate ('dz' is actually diff(self['range'])), not necessarily the
'true vertical' direction.
"""
dwdz, rng = self._diff_func(vel, 2, orientation)
return xr.DataArray(
dwdz,
coords=[rng, vel.time],
dims=["range", "time"],
attrs={"units": "s-1", "long_name": "Shear in Z-direction"},
)
[docs]
def shear_squared(self, vel):
"""
The horizontal shear squared.
Parameters
----------
vel : xarray.DataArray
ADCP raw velocity
Returns
-------
out: xarray.DataArray
Shear squared in 1/s^2
Notes
-----
This is actually (dudz)^2 + (dvdz)^2. So, if those variables
are not actually vertical derivatives of the horizontal
velocity, then this is not the 'horizontal shear squared'.
See Also
--------
:math:`dudz`, :math:`dvdz`
"""
shear2 = self.dudz(vel) ** 2 + self.dvdz(vel) ** 2
shear2.attrs["units"] = "s-2"
shear2.attrs["long_name"] = "Horizontal Shear Squared"
return shear2
[docs]
def doppler_noise_level(self, psd, pct_fN=0.8):
"""
Calculate bias due to Doppler noise using the noise floor
of the velocity spectra.
Parameters
----------
psd : xarray.DataArray (time, f)
The velocity spectra from a single depth bin (range), typically
in the mid-water range
pct_fN : float
Percent of Nyquist frequency to calculate characeristic frequency
Returns
-------
doppler_noise (xarray.DataArray):
Doppler noise level in units of m/s
Notes
-----
Approximates bias from
.. :math: \\sigma^{2}_{noise} = N x f_{c}
where :math: `\\sigma_{noise}` is the bias due to Doppler noise,
`N` is the constant variance or spectral density, and `f_{c}`
is the characteristic frequency.
The characteristic frequency is then found as
.. :math: f_{c} = pct_fN * (f_{s}/2)
where `f_{s}/2` is the Nyquist frequency.
Richard, Jean-Baptiste, et al. "Method for identification of Doppler noise
levels in turbulent flow measurements dedicated to tidal energy." International
Journal of Marine Energy 3 (2013): 52-64.
ThiƩbaut, Maxime, et al. "Investigating the flow dynamics and turbulence at a
tidal-stream energy site in a highly energetic estuary." Renewable Energy 195
(2022): 252-262.
"""
if not isinstance(psd, xr.DataArray):
raise TypeError("`psd` must be an instance of `xarray.DataArray`.")
if not isinstance(pct_fN, float) or not 0 <= pct_fN <= 1:
raise ValueError("`pct_fN` must be a float within the range [0, 1].")
if len(psd.shape) != 2:
raise Exception("PSD should be 2-dimensional (time, frequency)")
# Characteristic frequency set to 80% of Nyquist frequency
fN = self.fs / 2
fc = pct_fN * fN
# Get units right
if psd.freq.units == "Hz":
f_range = slice(fc, fN)
else:
f_range = slice(2 * np.pi * fc, 2 * np.pi * fN)
# Noise floor
N2 = psd.sel(freq=f_range) * psd.freq.sel(freq=f_range)
noise_level = np.sqrt(N2.mean(dim="freq"))
time_coord = psd.dims[0] # no reason this shouldn't be time or time_b5
return xr.DataArray(
noise_level.values.astype("float32"),
coords={time_coord: psd.coords[time_coord]},
attrs={
"units": "m s-1",
"long_name": "Doppler Noise Level",
"description": "Doppler noise level calculated " "from PSD white noise",
},
)
def _stress_func_warnings(self, ds, beam_angle, noise, tilt_thresh):
"""
Performs a series of checks and raises warnings for ADCP stress calculations.
This method checks several conditions relevant for ADCP stress calculations and raises
warnings if these conditions are not met. It checks if the beam angle is defined,
if the instrument's coordinate system is aligned with the principal flow directions,
if the tilt is above a threshold, if the noise level is specified, and if the data
set is in the 'beam' coordinate system.
Parameters
----------
ds : xarray.Dataset
Raw dataset in beam coordinates
beam_angle : int, default=ds.attrs['beam_angle']
ADCP beam angle in units of degrees
noise : int or xarray.DataArray (time)
Doppler noise level in units of m/s
tilt_thresh: numeric
Angle threshold beyond which violates a small angle assumption
Returns
-------
b_angle : float
If 'beam_angle' was None, it tries to find it in 'ds'.
noise : float
If 'noise' was None, it is set to 0.
"""
# Error 1. Beam Angle
b_angle = getattr(ds, "beam_angle", beam_angle)
if b_angle is None:
raise Exception(
" Beam angle not found in dataset and no beam angle supplied."
)
# Warning 1. Memo
warnings.warn(
" The beam-variance algorithms assume the instrument's "
"(XYZ) coordinate system is aligned with the principal "
"flow directions."
)
# Warning 2. Check tilt
tilt_mask = calc_tilt(ds["pitch"], ds["roll"]) > tilt_thresh
if sum(tilt_mask):
pct_above_thresh = round(sum(tilt_mask) / len(tilt_mask) * 100, 2)
warnings.warn(
f" {pct_above_thresh} % of measurements have a tilt "
f"greater than {tilt_thresh} degrees."
)
# Warning 3. Noise level of instrument is important considering 50 % of variance
# in ADCP data can be noise
if noise is None:
warnings.warn(
' No "noise" input supplied. Consider calculating "noise" '
"using `calc_doppler_noise`"
)
noise = 0
# Warning 4. Likely not in beam coordinates after running a typical analysis workflow
if "beam" not in ds.coord_sys:
warnings.warn(
" Raw dataset must be in the 'beam' coordinate system. "
"Rotating raw dataset..."
)
ds.velds.rotate2("beam")
return b_angle, noise
def _check_orientation(self, ds, orientation, beam5=False):
"""
Determines the beam order for the beam-stress rotation algorithm based on
the instrument orientation.
Note: Stacey defines the beams for down-looking Workhorse ADCPs.
According to the workhorse coordinate transformation
documentation, the instrument's:
x-axis points from beam 1 to 2, and
y-axis points from beam 4 to 3.
Nortek Signature x-axis points from beam 3 to 1
y-axis points from beam 2 to 4
Parameters
----------
ds : xarray.Dataset
Raw dataset in beam coordinates
orientation : str
The orientation of the instrument, either 'up' or 'down'.
If None, the orientation will be retrieved from the dataset or the
instance's default orientation.
beam5 : bool, default=False
A flag indicating whether a fifth beam is present.
If True, the number 4 will be appended to the beam order.
Returns
-------
beams : list of int
Beam order.
phi2 : float, optional
The mean of the roll values in radians. Only returned if 'beam5' is True.
phi3 : float, optional
The mean of the pitch values in radians, negated for Nortek instruments.
Only returned if 'beam5' is True.
"""
if orientation is None:
orientation = getattr(ds, "orientation", self.orientation)
if "TRDI" in ds.inst_make:
phi2 = np.deg2rad(self.mean(ds["pitch"].values))
phi3 = np.deg2rad(self.mean(ds["roll"].values))
if "down" in orientation.lower():
# this order is correct given the note above
beams = [0, 1, 2, 3] # for down-facing RDIs
elif "up" in orientation.lower():
beams = [0, 1, 3, 2] # for up-facing RDIs
else:
raise Exception(
"Please provide instrument orientation ['up' or 'down']"
)
# For Nortek Signatures
elif ("Signature" in ds.inst_model) or ("AD2CP" in ds.inst_model):
phi2 = np.deg2rad(self.mean(ds["roll"].values))
phi3 = -np.deg2rad(self.mean(ds["pitch"].values))
if "down" in orientation.lower():
beams = [2, 0, 3, 1] # for down-facing Norteks
elif "up" in orientation.lower():
beams = [0, 2, 3, 1] # for up-facing Norteks
else:
raise Exception(
"Please provide instrument orientation ['up' or 'down']"
)
if beam5:
beams.append(4)
return beams, phi2, phi3
else:
return beams
def _beam_variance(self, ds, time, noise, beam_order, n_beams):
"""
Calculates the variance of the along-beam velocities and then subtracts
noise from the result.
Parameters
----------
ds : xarray.Dataset
Raw dataset in beam coordinates
time : xarray.DataArray
Ensemble-averaged time coordinate
noise : int or xarray.DataArray (time)
Doppler noise level in units of m/s
beam_order : list of int
Beam order in pairs, per manufacturer and orientation
n_beams : int
Number of beams
Returns
-------
bp2_ : xarray.DataArray
Enxemble-averaged along-beam velocity variance,
written "beam-velocity prime squared bar" in units of m^2/s^2
"""
# Concatenate 5th beam velocity if need be
if n_beams == 4:
beam_vel = ds["vel"].values
elif n_beams == 5:
beam_vel = np.concatenate(
(ds["vel"].values, ds["vel_b5"].values[None, ...])
)
# Calculate along-beam velocity prime squared bar
bp2_ = np.empty((n_beams, len(ds["range"]), len(time))) * np.nan
for i, beam in enumerate(beam_order):
bp2_[i] = np.nanvar(self.reshape(beam_vel[beam]), axis=-1)
# Remove doppler_noise
if type(noise) == type(ds.vel):
noise = noise.values
bp2_ -= noise**2
return bp2_
[docs]
def reynolds_stress_4beam(self, ds, noise=None, orientation=None, beam_angle=None):
"""
Calculate the stresses from the covariance of along-beam
velocity measurements
Parameters
----------
ds : xarray.Dataset
Raw dataset in beam coordinates
noise : int or xarray.DataArray (time)
Doppler noise level in units of m/s
orientation : str, default=ds.attrs['orientation']
Direction ADCP is facing ('up' or 'down')
beam_angle : int, default=ds.attrs['beam_angle']
ADCP beam angle in units of degrees
Returns
-------
stress_vec : xarray.DataArray(s)
Stress vector with u'w'_ and v'w'_ components
Notes
-----
Assumes zero mean pitch and roll.
Assumes ADCP instrument coordinate system is aligned with principal flow
directions.
Stacey, Mark T., Stephen G. Monismith, and Jon R. Burau. "Measurements
of Reynolds stress profiles in unstratified tidal flow." Journal of
Geophysical Research: Oceans 104.C5 (1999): 10933-10949.
"""
# Run through warnings
b_angle, noise = self._stress_func_warnings(
ds, beam_angle, noise, tilt_thresh=5
)
# Fetch beam order
beam_order = self._check_orientation(ds, orientation, beam5=False)
# Calculate beam variance and subtract noise
time = self.mean(ds["time"].values)
bp2_ = self._beam_variance(ds, time, noise, beam_order, n_beams=4)
# Run stress calculations
denm = 4 * np.sin(np.deg2rad(b_angle)) * np.cos(np.deg2rad(b_angle))
upwp_ = (bp2_[0] - bp2_[1]) / denm
vpwp_ = (bp2_[2] - bp2_[3]) / denm
return xr.DataArray(
np.stack([upwp_ * np.nan, upwp_, vpwp_]).astype("float32"),
coords={
"tau": ["upvp_", "upwp_", "vpwp_"],
"range": ds["range"],
"time": time,
},
attrs={"units": "m2 s-2", "long_name": "Specific Reynolds Stress Vector"},
)
[docs]
def stress_tensor_5beam(
self, ds, noise=None, orientation=None, beam_angle=None, tke_only=False
):
"""
Calculate the stresses from the covariance of along-beam
velocity measurements
Parameters
----------
ds : xarray.Dataset
Raw dataset in beam coordinates
noise : int or xarray.DataArray with dim 'time', default=0
Doppler noise level in units of m/s
orientation : str, default=ds.attrs['orientation']
Direction ADCP is facing ('up' or 'down')
beam_angle : int, default=ds.attrs['beam_angle']
ADCP beam angle in units of degrees
tke_only : bool, default=False
If true, only calculates tke components
Returns
-------
tke_vec(, stress_vec) : xarray.DataArray or tuple[xarray.DataArray]
If tke_only is set to False, function returns `tke_vec` and `stress_vec`.
Otherwise only `tke_vec` is returned
Notes
-----
Assumes small-angle approximation is applicable.
Assumes ADCP instrument coordinate system is aligned with principal flow
directions, i.e. u', v' and w' are aligned to the instrument's (XYZ)
frame of reference.
The stress equations here utilize u'v'_ to account for small variations
in pitch and roll. u'v'_ cannot be directly calculated by a 5-beam ADCP,
so it is approximated by the covariance of `u` and `v`. The uncertainty
introduced by using this approximation is small if deviations from pitch
and roll are small (<= 5 degrees).
Dewey, R., and S. Stringer. "Reynolds stresses and turbulent kinetic
energy estimates from various ADCP beam configurations: Theory." J. of
Phys. Ocean (2007): 1-35.
Guerra, Maricarmen, and Jim Thomson. "Turbulence measurements from
five-beam acoustic Doppler current profilers." Journal of Atmospheric
and Oceanic Technology 34.6 (2017): 1267-1284.
"""
# Check that beam 5 velocity exists
if "vel_b5" not in ds.data_vars:
raise Exception("Must have 5th beam data to use this function.")
# Run through warnings
b_angle, noise = self._stress_func_warnings(
ds, beam_angle, noise, tilt_thresh=5
)
# Fetch beam order
beam_order, phi2, phi3 = self._check_orientation(ds, orientation, beam5=True)
# Calculate beam variance and subtract noise
time = self.mean(ds["time"].values)
bp2_ = self._beam_variance(ds, time, noise, beam_order, n_beams=5)
# Run tke and stress calculations
th = np.deg2rad(b_angle)
sin = np.sin
cos = np.cos
denm = -4 * sin(th) ** 6 * cos(th) ** 2
upup_ = (
-2
* sin(th) ** 4
* cos(th) ** 2
* (bp2_[1] + bp2_[0] - 2 * cos(th) ** 2 * bp2_[4])
+ 2 * sin(th) ** 5 * cos(th) * phi3 * (bp2_[1] - bp2_[0])
) / denm
vpvp_ = (
-2
* sin(th) ** 4
* cos(th) ** 2
* (bp2_[3] + bp2_[0] - 2 * cos(th) ** 2 * bp2_[4])
- 2 * sin(th) ** 4 * cos(th) ** 2 * phi3 * (bp2_[1] - bp2_[0])
+ 2 * sin(th) ** 3 * cos(th) ** 3 * phi3 * (bp2_[1] - bp2_[0])
- 2 * sin(th) ** 5 * cos(th) * phi2 * (bp2_[3] - bp2_[2])
) / denm
wpwp_ = (
-2
* sin(th) ** 5
* cos(th)
* (
bp2_[1]
- bp2_[0]
+ 2 * sin(th) ** 5 * cos(th) * phi2 * (bp2_[3] - bp2_[2])
- 4 * sin(th) ** 6 * cos(th) ** 2 * bp2_[4]
)
) / denm
tke_vec = xr.DataArray(
np.stack([upup_, vpvp_, wpwp_]).astype("float32"),
coords={
"tke": ["upup_", "vpvp_", "wpwp_"],
"range": ds["range"],
"time": time,
},
attrs={
"units": "m2 s-2",
"long_name": "TKE Vector",
"standard_name": "specific_turbulent_kinetic_energy_of_sea_water",
},
)
if tke_only:
return tke_vec
else:
# Guerra Thomson calculate u'v' bar from from the covariance of u' and v'
ds.velds.rotate2("inst")
vel = self.detrend(ds.vel.values)
upvp_ = np.nanmean(vel[0] * vel[1], axis=-1, dtype=np.float64).astype(
np.float32
)
upwp_ = (
sin(th) ** 5 * cos(th) * (bp2_[1] - bp2_[0])
+ 2 * sin(th) ** 4 * cos(th) * 2 * phi3 * (bp2_[1] + bp2_[0])
- 4 * sin(th) ** 4 * cos(th) * 2 * phi3 * bp2_[4]
- 4 * sin(th) ** 6 * cos(th) * 2 * phi2 * upvp_
) / denm
vpwp_ = (
sin(th) ** 5 * cos(th) * (bp2_[3] - bp2_[2])
- 2 * sin(th) ** 4 * cos(th) * 2 * phi2 * (bp2_[3] + bp2_[2])
+ 4 * sin(th) ** 4 * cos(th) * 2 * phi2 * bp2_[4]
+ 4 * sin(th) ** 6 * cos(th) * 2 * phi3 * upvp_
) / denm
stress_vec = xr.DataArray(
np.stack([upvp_, upwp_, vpwp_]).astype("float32"),
coords={
"tau": ["upvp_", "upwp_", "vpwp_"],
"range": ds["range"],
"time": time,
},
attrs={
"units": "m2 s-2",
"long_name": "Specific Reynolds Stress Vector",
},
)
return tke_vec, stress_vec
[docs]
def check_turbulence_cascade_slope(self, psd, freq_range=[0.2, 0.4]):
"""
This function calculates the slope of the PSD, the power spectra
of velocity, within the given frequency range. The purpose of this
function is to check that the region of the PSD containing the
isotropic turbulence cascade decreases at a rate of :math:`f^{-5/3}`.
Parameters
----------
psd : xarray.DataArray ([[range,] time,] freq)
The power spectral density (1D, 2D or 3D)
freq_range : iterable(2) (default: [6.28, 12.57])
The range over which the isotropic turbulence cascade occurs, in
units of the psd frequency vector (Hz or rad/s)
Returns
-------
(m, b): tuple (slope, y-intercept)
A tuple containing the coefficients of the log-adjusted linear
regression between PSD and frequency
Notes
-----
Calculates slope based on the `standard` formula for dissipation:
.. math:: S(k) = \\alpha \\epsilon^{2/3} k^{-5/3} + N
The slope of the isotropic turbulence cascade, which should be
equal to :math:`k^{-5/3}` or :math:`f^{-5/3}`, where k and f are
the wavenumber and frequency vectors, is estimated using linear
regression with a log transformation:
.. math:: log10(y) = m*log10(x) + b
Which is equivalent to
.. math:: y = 10^{b} x^{m}
Where :math:`y` is S(k) or S(f), :math:`x` is k or f, :math:`m`
is the slope (ideally -5/3), and :math:`10^{b}` is the intercept of
y at x^m=1.
"""
if not isinstance(psd, xr.DataArray):
raise TypeError("`psd` must be an instance of `xarray.DataArray`.")
if not hasattr(freq_range, "__iter__") or len(freq_range) != 2:
raise ValueError("`freq_range` must be an iterable of length 2.")
idx = np.where((freq_range[0] < psd.freq) & (psd.freq < freq_range[1]))
idx = idx[0]
x = np.log10(psd["freq"].isel(freq=idx))
y = np.log10(psd.isel(freq=idx))
y_bar = y.mean("freq")
x_bar = x.mean("freq")
# using the formula to calculate the slope and intercept
n = np.sum((x - x_bar) * (y - y_bar), axis=0)
d = np.sum((x - x_bar) ** 2, axis=0)
m = n / d
b = y_bar - m * x_bar
return m, b
[docs]
def dissipation_rate_LT83(self, psd, U_mag, freq_range=[0.2, 0.4], noise=None):
"""
Calculate the TKE dissipation rate from the velocity spectra.
Parameters
----------
psd : xarray.DataArray (time,f)
The power spectral density from a single depth bin (range)
U_mag : xarray.DataArray (time)
The bin-averaged horizontal velocity (a.k.a. speed) from a single depth bin (range)
f_range : iterable(2)
The range over which to integrate/average the spectrum, in units
of the psd frequency vector (Hz or rad/s)
noise : float or array-like
Instrument noise level in same units as velocity. Typically
found from `adp.turbulence.doppler_noise_level`.
Default: None.
Returns
-------
dissipation_rate : xarray.DataArray (...,n_time)
Turbulent kinetic energy dissipation rate
Notes
-----
This uses the `standard` formula for dissipation:
.. math:: S(k) = \\alpha \\epsilon^{2/3} k^{-5/3} + N
where :math:`\\alpha = 0.5` (1.5 for all three velocity
components), `k` is wavenumber, `S(k)` is the turbulent
kinetic energy spectrum, and `N' is the doppler noise level
associated with the TKE spectrum.
With :math:`k \\rightarrow \\omega / U`, then -- to preserve variance --
:math:`S(k) = U S(\\omega)`, and so this becomes:
.. math:: S(\\omega) = \\alpha \\epsilon^{2/3} \\omega^{-5/3} U^{2/3} + N
With :math:`k \\rightarrow (2\\pi f) / U`, then
.. math:: S(\\omega) = \\alpha \\epsilon^{2/3} f^{-5/3} (U/(2*\\pi))^{2/3} + N
LT83 : Lumley and Terray, "Kinematics of turbulence convected
by a random wave field". JPO, 1983, vol13, pp2000-2007.
"""
if len(psd.shape) != 2:
raise Exception("PSD should be 2-dimensional (time, frequency)")
if len(U_mag.shape) != 1:
raise Exception("U_mag should be 1-dimensional (time)")
if not hasattr(freq_range, "__iter__") or len(freq_range) != 2:
raise ValueError("`freq_range` must be an iterable of length 2.")
if noise is not None:
if np.shape(noise)[0] != np.shape(psd)[0]:
raise Exception("Noise should have same first dimension as PSD")
else:
noise = np.array(0)
# Noise subtraction from binner.TimeBinner._psd_base
psd = psd.copy()
if noise is not None:
psd -= noise**2 / (self.fs / 2)
psd = psd.where(psd > 0, np.min(np.abs(psd)) / 100)
freq = psd.freq
idx = np.where((freq_range[0] < freq) & (freq < freq_range[1]))
idx = idx[0]
if freq.units == "Hz":
U = U_mag / (2 * np.pi)
else:
U = U_mag
a = 0.5
out = (psd[:, idx] * freq[idx] ** (5 / 3) / a).mean(axis=-1) ** (
3 / 2
) / U.values
return xr.DataArray(
out.astype("float32"),
attrs={
"units": "m2 s-3",
"long_name": "TKE Dissipation Rate",
"standard_name": "specific_turbulent_kinetic_energy_dissipation_in_sea_water",
"description": "TKE dissipation rate calculated using "
"the method from Lumley and Terray, 1983",
},
)
[docs]
def dissipation_rate_SF(self, vel_raw, r_range=[1, 5]):
"""
Calculate TKE dissipation rate from ADCP along-beam velocity using the
"structure function" (SF) method.
Parameters
----------
vel_raw : xarray.DataArray
The raw beam velocity data (one beam, last dimension time) upon
which to perform the SF technique.
r_range : numeric, default=[1,5]
Range of r in [m] to calc dissipation across. Low end of range should be
bin size, upper end of range is limited to the length of largest eddies
in the inertial subrange.
Returns
-------
dissipation_rate : xarray.DataArray (range, time)
Dissipation rate estimated from the structure function
noise : xarray.DataArray (range, time)
Noise offset estimated from the structure function at r = 0
structure_function : xarray.DataArray (range, r, time)
Structure function D(z,r)
Notes
-----
Dissipation rate outputted by this function is only valid if the isotropic
turbulence cascade can be seen in the TKE spectra.
Velocity data must be in beam coordinates and should be cleaned of surface
interference.
This method calculates the 2nd order structure function:
.. math:: D(z,r) = [(u'(z) - u`(z+r))^2]
where `u'` is the velocity fluctuation `z` is the depth bin,
`r` is the separation between depth bins, and [] denotes a time average
(size 'ADPBinner.n_bin').
The stucture function can then be used to estimate the dissipation rate:
.. math:: D(z,r) = C^2 \\epsilon^{2/3} r^{2/3} + N
where `C` is a constant (set to 2.1), `\\epsilon` is the dissipation rate,
and `N` is the offset due to noise. Noise is then calculated by
.. math:: \\sigma = (N/2)^{1/2}
Wiles, et al, "A novel technique for measuring the rate of
turbulent dissipation in the marine environment"
GRL, 2006, 33, L21608.
"""
if not isinstance(vel_raw, xr.DataArray):
raise TypeError("`vel_raw` must be an instance of `xarray.DataArray`.")
if not hasattr(r_range, "__iter__") or len(r_range) != 2:
raise ValueError("`r_range` must be an iterable of length 2.")
if len(vel_raw.shape) != 2:
raise Exception(
"Function input must be single beam and in 'beam' coordinate system"
)
if "range_b5" in vel_raw.dims:
rng = vel_raw["range_b5"]
time = self.mean(vel_raw["time_b5"].values)
else:
rng = vel_raw["range"]
time = self.mean(vel_raw["time"].values)
# bm shape is [range, ensemble time, 'data within ensemble']
bm = self.demean(vel_raw.values) # take out the ensemble mean
e = np.empty(bm.shape[:2], dtype="float32") * np.nan
n = np.empty(bm.shape[:2], dtype="float32") * np.nan
bin_size = round(np.diff(rng)[0], 3)
R = int(r_range[0] / bin_size)
r = np.arange(bin_size, r_range[1] + bin_size, bin_size)
# D(z,r,time)
D = np.zeros((bm.shape[0], r.size, bm.shape[1]))
for r_value in r:
# the i in d is the index based on r and bin size
# bin size index, > 1
i = int(r_value / bin_size)
for idx in range(bm.shape[1]): # for each ensemble
# subtract the variance of adjacent depth cells
d = np.nanmean((bm[:-i, idx, :] - bm[i:, idx, :]) ** 2, axis=-1)
# have to insert 0/nan in first bin to match length
spaces = np.empty((i,))
spaces[:] = np.nan
D[:, i - 1, idx] = np.concatenate((spaces, d))
# find best fit line y = mx + b (aka D(z,r) = A*r^2/3 + N) to solve
# epsilon for each depth and ensemble
for idx in range(bm.shape[1]): # for each ensemble
# start at minimum r_range and work up to surface
for i in range(D.shape[1], D.shape[0]):
# average ensembles together
if not all(np.isnan(D[i, R:, idx])): # if no nan's
e[i, idx], n[i, idx] = np.polyfit(
r[R:] ** 2 / 3, D[i, R:, idx], deg=1
)
else:
e[i, idx], n[i, idx] = np.nan, np.nan
# A taken as 2.1, n = y-intercept
epsilon = (e / 2.1) ** (3 / 2)
noise = np.sqrt(n / 2)
epsilon = xr.DataArray(
epsilon.astype("float32"),
coords={vel_raw.dims[0]: rng, vel_raw.dims[1]: time},
dims=vel_raw.dims,
attrs={
"units": "m2 s-3",
"long_name": "TKE Dissipation Rate",
"standard_name": "specific_turbulent_kinetic_energy_dissipation_in_sea_water",
"description": "TKE dissipation rate calculated from the "
'"structure function" method from Wiles et al, 2006.',
},
)
noise = xr.DataArray(
noise.astype("float32"),
coords={vel_raw.dims[0]: rng, vel_raw.dims[1]: time},
attrs={
"units": "m s-1",
"long_name": "Structure Function Noise Offset",
},
)
SF = xr.DataArray(
D.astype("float32"),
coords={vel_raw.dims[0]: rng, "range_SF": r, vel_raw.dims[1]: time},
attrs={
"units": "m2 s-2",
"long_name": "Structure Function D(z,r)",
"description": '"Structure function" from Wiles et al, 2006.',
},
)
return epsilon, noise, SF
[docs]
def friction_velocity(self, ds_avg, upwp_, z_inds=slice(1, 5), H=None):
"""
Approximate friction velocity from shear stress using a
logarithmic profile.
Parameters
----------
ds_avg : xarray.Dataset
Bin-averaged dataset containing `stress_vec`
upwp_ : xarray.DataArray
First component of Reynolds shear stress vector, "u-prime v-prime bar"
Ex `ds_avg['stress_vec'].sel(tau='upwp_')`
z_inds : slice(int,int)
Depth indices to use for profile. Default = slice(1, 5)
H : numeric (default=`ds_avg.depth`)
Total water depth
Returns
-------
u_star : xarray.DataArray
Friction velocity
"""
if not isinstance(ds_avg, xr.Dataset):
raise TypeError("`ds_avg` must be an instance of `xarray.Dataset`.")
if not isinstance(upwp_, xr.DataArray):
raise TypeError("`upwp_` must be an instance of `xarray.DataArray`.")
if not isinstance(z_inds, slice):
raise TypeError("`z_inds` must be an instance of `slice(int,int)`.")
if not H:
H = ds_avg["depth"].values
z = ds_avg["range"].values
upwp_ = upwp_.values
sign = np.nanmean(np.sign(upwp_[z_inds, :]), axis=0)
u_star = (
np.nanmean(sign * upwp_[z_inds, :] / (1 - z[z_inds, None] / H), axis=0)
** 0.5
)
return xr.DataArray(
u_star.astype("float32"),
coords={"time": ds_avg["time"]},
attrs={"units": "m s-1", "long_name": "Friction Velocity"},
)