import numpy as np
from scipy.signal import medfilt2d, convolve2d
def _nans(*args, **kwargs):
out = np.empty(*args, **kwargs)
if np.issubdtype(out.flatten()[0], np.integer):
out[:] = 0
return out
else:
out[:] = np.nan
return out
def _nans_like(*args, **kwargs):
out = np.empty_like(*args, **kwargs)
out[:] = np.nan
return out
def _find(arr):
return np.nonzero(np.ravel(arr))[0]
[docs]
def detrend_array(arr, axis=-1, in_place=False):
"""
Remove a linear trend from arr.
Parameters
----------
arr : array_like
The array from which to remove a linear trend.
axis : int
The axis along which to operate.
Notes
-----
This method is copied from the matplotlib.mlab library, but
implements the covariance calcs explicitly for added speed.
This works much faster than mpl.mlab.detrend for multi-dimensional
arrays, and is also faster than linalg.lstsq methods.
"""
arr = np.asarray(arr)
if not in_place:
arr = arr.copy()
sz = np.ones(arr.ndim, dtype=int)
sz[axis] = arr.shape[axis]
x = np.arange(sz[axis], dtype=np.float_).reshape(sz)
x -= np.nanmean(x, axis=axis, keepdims=True)
arr -= np.nanmean(arr, axis=axis, keepdims=True)
b = np.nanmean((x * arr), axis=axis, keepdims=True) / np.nanmean(
(x**2), axis=axis, keepdims=True
)
arr -= b * x
return arr
[docs]
def group(bl, min_length=0):
"""
Find continuous segments in a boolean array.
Parameters
----------
bl : numpy.ndarray (dtype='bool')
The input boolean array.
min_length : int (optional)
Specifies the minimum number of continuous points to consider a
`group` (i.e. that will be returned).
Returns
-------
out : np.ndarray(slices,)
a vector of slice objects, which indicate the continuous
sections where `bl` is True.
Notes
-----
This function has funny behavior for single points. It will
return the same two indices for the beginning and end.
"""
if not any(bl):
return np.empty(0)
vl = np.diff(bl.astype("int"))
ups = np.nonzero(vl == 1)[0] + 1
dns = np.nonzero(vl == -1)[0] + 1
if bl[0]:
if len(ups) == 0:
ups = np.array([0])
else:
ups = np.concatenate((np.array([0]), [len(ups)]))
if bl[-1]:
if len(dns) == 0:
dns = np.array([len(bl)])
else:
dns = np.concatenate((dns, [len(bl)]))
out = np.empty(len(dns), dtype="O")
idx = 0
for u, d in zip(ups, dns):
if d - u < min_length:
continue
out[idx] = slice(u, d)
idx += 1
return out[:idx]
[docs]
def slice1d_along_axis(arr_shape, axis=0):
"""
Return an iterator object for looping over 1-D slices, along ``axis``, of
an array of shape arr_shape.
Parameters
----------
arr_shape : tuple,list
Shape of the array over which the slices will be made.
axis : integer
Axis along which `arr` is sliced.
Returns
-------
Iterator : object
The iterator object returns slice objects which slices arrays of
shape arr_shape into 1-D arrays.
Examples
--------
>> out=np.empty(replace(arr.shape,0,1))
>> for slc in slice1d_along_axis(arr.shape,axis=0):
>> out[slc]=my_1d_function(arr[slc])
"""
nd = len(arr_shape)
if axis < 0:
axis += nd
ind = [0] * (nd - 1)
i = np.zeros(nd, "O")
indlist = list(range(nd))
indlist.remove(axis)
i[axis] = slice(None)
itr_dims = np.asarray(arr_shape).take(indlist)
Ntot = np.prod(itr_dims)
i.put(indlist, ind)
k = 0
while k < Ntot:
# increment the index
n = -1
while (ind[n] >= itr_dims[n]) and (n > (1 - nd)):
ind[n - 1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
yield tuple(i)
ind[-1] += 1
k += 1
[docs]
def convert_degrees(deg, tidal_mode=True):
"""
Converts between the 'cartesian angle' (counter-clockwise from East) and
the 'polar angle' in (degrees clockwise from North)
Parameters
----------
deg: float or array-like
Number or array in 'degrees CCW from East' or 'degrees CW from North'
tidal_mode : bool
If true, range is set from 0 to +/-180 degrees. If false, range is 0 to
360 degrees. Default = True
Returns
-------
out : float or array-like
Input data transformed to 'degrees CW from North' or
'degrees CCW from East', respectively (based on `deg`)
Notes
-----
The same algorithm is used to convert back and forth between 'CCW from E'
and 'CW from N'
"""
out = -(deg - 90) % 360
if tidal_mode:
out[out > 180] -= 360
return out
[docs]
def fillgaps(a, maxgap=np.inf, dim=0, extrapFlg=False):
"""
Linearly fill NaN value in an array.
Parameters
----------
a : numpy.ndarray
The array to be filled.
maxgap : numpy.ndarray (optional: inf)
The maximum gap to fill.
dim : int (optional: 0)
The dimension to operate along.
extrapFlg : bool (optional: False)
Whether to extrapolate if NaNs are found at the ends of the
array.
See Also
--------
mhkit.dolfyn.tools.misc._interpgaps : Linearly interpolates in time.
Notes
-----
This function interpolates assuming spacing/timestep between
successive points is constant. If the spacing is not constant, use
_interpgaps.
"""
# If this is a multi-dimensional array, operate along axis dim.
if a.ndim > 1:
for inds in slice1d_along_axis(a.shape, dim):
fillgaps(a[inds], maxgap, 0, extrapFlg)
return
a = np.asarray(a)
nd = a.ndim
if dim < 0:
dim += nd
if dim >= nd:
raise ValueError("dim must be less than a.ndim; dim=%d, rank=%d." % (dim, nd))
ind = [0] * (nd - 1)
i = np.zeros(nd, "O")
indlist = list(range(nd))
indlist.remove(dim)
i[dim] = slice(None, None)
i.put(indlist, ind)
gd = np.nonzero(~np.isnan(a))[0]
# Here we extrapolate the ends, if necessary:
if extrapFlg and gd.__len__() > 0:
if gd[0] != 0 and gd[0] <= maxgap:
a[: gd[0]] = a[gd[0]]
if gd[-1] != a.__len__() and (a.__len__() - (gd[-1] + 1)) <= maxgap:
a[gd[-1] :] = a[gd[-1]]
# Here is the main loop
if gd.__len__() > 1:
inds = np.nonzero((1 < np.diff(gd)) & (np.diff(gd) <= maxgap + 1))[0]
for i2 in range(0, inds.__len__()):
ii = list(range(gd[inds[i2]] + 1, gd[inds[i2] + 1]))
a[ii] = (
np.diff(a[gd[[inds[i2], inds[i2] + 1]]])
* (np.arange(0, ii.__len__()) + 1)
/ (ii.__len__() + 1)
+ a[gd[inds[i2]]]
).astype(a.dtype)
return a
[docs]
def interpgaps(a, t, maxgap=np.inf, dim=0, extrapFlg=False):
"""
Fill gaps (NaN values) in ``a`` by linear interpolation along
dimension ``dim`` with the point spacing specified in ``t``.
Parameters
----------
a : numpy.ndarray
The array containing NaN values to be filled.
t : numpy.ndarray (len(t) == a.shape[dim])
Independent variable of the points in ``a``, e.g. timestep
maxgap : numpy.ndarray (optional: inf)
The maximum gap to fill.
dim : int (optional: 0)
The dimension to operate along.
extrapFlg : bool (optional: False)
Whether to extrapolate if NaNs are found at the ends of the
array.
See Also
--------
mhkit.dolfyn.tools.misc.fillgaps : Linearly interpolates in array-index space.
"""
# If this is a multi-dimensional array, operate along dim dim.
if a.ndim > 1:
for inds in slice1d_along_axis(a.shape, dim):
interpgaps(a[inds], t, maxgap, 0, extrapFlg)
return
gd = _find(~np.isnan(a))
# Here we extrapolate the ends, if necessary:
if extrapFlg and gd.__len__() > 0:
if gd[0] != 0 and gd[0] <= maxgap:
a[: gd[0]] = a[gd[0]]
if gd[-1] != a.__len__() and (a.__len__() - (gd[-1] + 1)) <= maxgap:
a[gd[-1] :] = a[gd[-1]]
# Here is the main loop
if gd.__len__() > 1:
inds = _find((1 < np.diff(gd)) & (np.diff(gd) <= maxgap + 1))
for i2 in range(0, inds.__len__()):
ii = np.arange(gd[inds[i2]] + 1, gd[inds[i2] + 1])
ti = (t[ii] - t[gd[inds[i2]]]) / np.diff(
t[[gd[inds[i2]], gd[inds[i2] + 1]]]
)
a[ii] = (
np.diff(a[gd[[inds[i2], inds[i2] + 1]]]) * ti + a[gd[inds[i2]]]
).astype(a.dtype)
return a
[docs]
def medfiltnan(a, kernel, thresh=0):
"""
Do a running median filter of the data. Regions where more than
``thresh`` fraction of the points are NaN are set to NaN.
Parameters
----------
a : numpy.ndarray
2D array containing data to be filtered.
kernel_size : numpy.ndarray or list, optional
A scalar or a list of length 2, giving the size of the median
filter window in each dimension. Elements of kernel_size should
be odd. If kernel_size is a scalar, then this scalar is used as
the size in each dimension.
thresh : int
Maximum gap in *a* to filter over
Returns
-------
out : numpy.ndarray
2D array of same size containing filtered data
See Also
--------
scipy.signal.medfilt2d
"""
flag_1D = False
if a.ndim == 1:
a = a[None, :]
flag_1D = True
try:
len(kernel)
except:
kernel = [1, kernel]
out = medfilt2d(a, kernel)
if thresh > 0:
out[
convolve2d(np.isnan(a), np.ones(kernel) / np.prod(kernel), "same") > thresh
] = np.NaN
if flag_1D:
return out[0]
return out