Source code for mhkit.tidal.graphics

import numpy as np
import bisect
from scipy.interpolate import interpn as _interpn
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
from mhkit.river.resource import exceedance_probability
from mhkit.tidal.resource import _histogram, _flood_or_ebb
from mhkit.river.graphics import plot_velocity_duration_curve, _xy_plot
from mhkit.utils import convert_to_dataarray


def _initialize_polar(ax=None, metadata=None, flood=None, ebb=None):
    """
    Initializes a polar plots with cardinal directions and ebb/flow

    Parameters
    ----------
    ax :axes
    metadata: dictionary
        Contains site meta data
    Returns
    -------
    ax: axes
    """

    if ax == None:
        # Initialize polar plot
        fig = plt.figure(figsize=(12, 8))
        ax = plt.axes(polar=True)
    # Angles are measured clockwise from true north
    ax.set_theta_zero_location("N")
    ax.set_theta_direction(-1)
    xticks = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"]
    # Polar plots do not have minor ticks, insert flood/ebb into major ticks
    xtickDegrees = [0.0, 45.0, 90.0, 135.0, 180.0, 225.0, 270.0, 315.0]
    # Set title and metadata box
    if metadata != None:
        # Set the Title
        plt.title(metadata["name"])
        # List of strings for metadata box
        bouy_str = [
            f'Lat = {float(metadata["lat"]):0.2f}$\\degree$',
            f'Lon = {float(metadata["lon"]):0.2f}$\\degree$',
        ]
        # Create string for text box
        bouy_data = "\n".join(bouy_str)
        # Set the text box
        ax.text(
            -0.3,
            0.80,
            bouy_data,
            transform=ax.transAxes,
            fontsize=14,
            verticalalignment="top",
            bbox=dict(facecolor="none", edgecolor="k", pad=5),
        )
    # If defined plot flood and ebb directions as major ticks
    if flood != None:
        # Get flood direction in degrees
        floodDirection = flood
        # Polar plots do not have minor ticks,
        #    insert flood/ebb into major ticks
        bisect.insort(xtickDegrees, floodDirection)
        # Get location in list
        idxFlood = xtickDegrees.index(floodDirection)
        # Insert label at appropriate location
        xticks[idxFlood:idxFlood] = ["\nFlood"]
    if ebb != None:
        # Get flood direction in degrees
        ebbDirection = ebb
        # Polar plots do not have minor ticks,
        #    insert flood/ebb into major ticks
        bisect.insort(xtickDegrees, ebbDirection)
        # Get location in list
        idxEbb = xtickDegrees.index(ebbDirection)
        # Insert label at appropriate location
        xticks[idxEbb:idxEbb] = ["\nEbb"]
    ax.set_xticks(np.array(xtickDegrees) * np.pi / 180.0)
    ax.set_xticklabels(xticks)
    return ax


def _check_inputs(directions, velocities, flood, ebb):
    """
    Runs checks on inputs for the graphics functions.

    Parameters
    ----------
    directions: array-like
        Directions in degrees with 0 degrees specified as true north
    velocities: array-like
        Velocities in m/s
    flood: float
        Direction in degrees added to theta ticks
    ebb: float
        Direction in degrees added to theta ticks
    """

    velocities = convert_to_dataarray(velocities)
    directions = convert_to_dataarray(directions)

    if len(velocities) != len(directions):
        raise ValueError("velocities and directions must have the same length")
    if all(np.nan_to_num(velocities.values) < 0):
        raise ValueError("All velocities must be positive")
    if all(np.nan_to_num(directions.values) < 0) and all(
        np.nan_to_num(directions.values) > 360
    ):
        raise ValueError("directions must be between 0 and 360 degrees")
    if not isinstance(flood, (int, float, type(None))):
        raise TypeError("flood must be of type int or float")
    if not isinstance(ebb, (int, float, type(None))):
        raise TypeError("ebb must be of type int or float")
    if flood is not None:
        if (flood < 0) and (flood > 360):
            raise ValueError("flood must be between 0 and 360 degrees")
    if ebb is not None:
        if (ebb < 0) and (ebb > 360):
            raise ValueError("ebb must be between 0 and 360 degrees")


[docs] def plot_rose( directions, velocities, width_dir, width_vel, ax=None, metadata=None, flood=None, ebb=None, ): """ Creates a polar histogram. Direction angles from binned histogram must be specified such that 0 degrees is north. Parameters ---------- directions: array-like Directions in degrees with 0 degrees specified as true north velocities: array-like Velocities in m/s width_dir: float Width of directional bins for histogram in degrees width_vel: float Width of velocity bins for histogram in m/s ax: float Polar plot axes to add polar histogram metadata: dictonary If provided needs keys ['name', 'lat', 'lon'] for plot title and information box on plot flood: float Direction in degrees added to theta ticks ebb: float Direction in degrees added to theta ticks Returns ------- ax: figure Water current rose plot """ _check_inputs(directions, velocities, flood, ebb) if not isinstance(width_dir, (int, float)): raise TypeError("width_dir must be of type int or float") if not isinstance(width_vel, (int, float)): raise TypeError("width_vel must be of type int or float") if width_dir < 0: raise ValueError("width_dir must be greater than 0") if width_vel < 0: raise ValueError("width_vel must be greater than 0") # Calculate the 2D histogram H, dir_edges, vel_edges = _histogram(directions, velocities, width_dir, width_vel) # Determine number of bins dir_bins = H.shape[0] vel_bins = H.shape[1] # Create the angles thetas = np.arange(0, 2 * np.pi, 2 * np.pi / dir_bins) # Initialize the polar polt ax = _initialize_polar(ax=ax, metadata=metadata, flood=flood, ebb=ebb) # Set bar color based on wind speed colors = plt.cm.viridis(np.linspace(0, 1.0, vel_bins)) # Set the current speed bin label names # Calculate the 2D histogram labels = [f"{i:.1f}-{j:.1f}" for i, j in zip(vel_edges[:-1], vel_edges[1:])] # Initialize the vertical-offset (polar radius) for the stacked bar chart. r_offset = np.zeros(dir_bins) for vel_bin in range(vel_bins): # Plot fist set of bars in all directions ax.bar( thetas, H[:, vel_bin], width=(2 * np.pi / dir_bins), bottom=r_offset, color=colors[vel_bin], label=labels[vel_bin], ) # Increase the radius offset in all directions r_offset = r_offset + H[:, vel_bin] # Add the a legend for current speed bins plt.legend( loc="best", title="Velocity bins [m/s]", bbox_to_anchor=(1.29, 1.00), ncol=1 ) # Get the r-ticks (polar y-ticks) yticks = plt.yticks() # Format y-ticks with units for clarity rticks = [f"{y:.1f}%" for y in yticks[0]] # Set the y-ticks plt.yticks(yticks[0], rticks) return ax
[docs] def plot_joint_probability_distribution( directions, velocities, width_dir, width_vel, ax=None, metadata=None, flood=None, ebb=None, ): """ Creates a polar histogram. Direction angles from binned histogram must be specified such that 0 is north. Parameters ---------- directions: array-like Directions in degrees with 0 degrees specified as true north velocities: array-like Velocities in m/s width_dir: float Width of directional bins for histogram in degrees width_vel: float Width of velocity bins for histogram in m/s ax: float Polar plot axes to add polar histogram metadata: dictonary If provided needs keys ['name', 'Lat', 'Lon'] for plot title and information box on plot flood: float Direction in degrees added to theta ticks ebb: float Direction in degrees added to theta ticks Returns ------- ax: figure Joint probability distribution """ _check_inputs(directions, velocities, flood, ebb) if not isinstance(width_dir, (int, float)): raise TypeError("width_dir must be of type int or float") if not isinstance(width_vel, (int, float)): raise TypeError("width_vel must be of type int or float") if width_dir < 0: raise ValueError("width_dir must be greater than 0") if width_vel < 0: raise ValueError("width_vel must be greater than 0") # Calculate the 2D histogram H, dir_edges, vel_edges = _histogram(directions, velocities, width_dir, width_vel) # Initialize the polar polt ax = _initialize_polar(ax=ax, metadata=metadata, flood=flood, ebb=ebb) # Set the current speed bin label names labels = [f"{i:.1f}-{j:.1f}" for i, j in zip(vel_edges[:-1], vel_edges[1:])] # Set vel & dir bins to middle of bin except at ends dir_bins = 0.5 * (dir_edges[1:] + dir_edges[:-1]) # set all bins to middle vel_bins = 0.5 * (vel_edges[1:] + vel_edges[:-1]) # Reset end of bin range to edge of bin dir_bins[0] = dir_edges[0] vel_bins[0] = vel_edges[0] dir_bins[-1] = dir_edges[-1] vel_bins[-1] = vel_edges[-1] # Interpolate the bins back to specific data points z = _interpn( (dir_bins, vel_bins), H, np.vstack([directions, velocities]).T, method="splinef2d", bounds_error=False, ) # Plot the most probable data last idx = z.argsort() # Convert to radians and order points by probability theta, r, z = directions.values[idx] * np.pi / 180, velocities.values[idx], z[idx] # Create scatter plot colored by probability density sx = ax.scatter(theta, r, c=z, s=5, edgecolor=None) # Create colorbar plt.colorbar(sx, ax=ax, label="Joint Probability [%]") # Get the r-ticks (polar y-ticks) yticks = ax.get_yticks() # Set y-ticks labels ax.set_yticks(yticks) # to avoid matplotlib warning ax.set_yticklabels([f"{y:.1f} $m/s$" for y in yticks]) return ax
[docs] def plot_current_timeseries( directions, velocities, principal_direction, label=None, ax=None ): """ Returns a plot of velocity from an array of direction and speed data in the direction of the supplied principal_direction. Parameters ---------- directions: array-like Time-series of directions [degrees] velocities: array-like Time-series of speeds [m/s] principal_direction: float Direction to compute the velocity in [degrees] label: string Label to use in the legend ax : matplotlib axes object Axes for plotting. If None, then a new figure with a single axes is used. Returns ------- ax: figure Time-series plot of current-speed velocity """ _check_inputs(directions, velocities, flood=None, ebb=None) if not isinstance(principal_direction, (int, float)): raise TypeError("principal_direction must be of type int or float") if (principal_direction < 0) or (principal_direction > 360): raise ValueError("principal_direction must be between 0 and 360 degrees") # Rotate coordinate system by supplied principal_direction principal_directions = directions - principal_direction # Calculate the velocity velocity = velocities * np.cos(np.pi / 180 * principal_directions) # Call on standard xy plotting ax = _xy_plot( velocities.index, velocity, fmt="-", label=label, xlabel="Time", ylabel="Velocity [$m/s$]", ax=ax, ) return ax
[docs] def tidal_phase_probability(directions, velocities, flood, ebb, bin_size=0.1, ax=None): """ Discretizes the tidal series speed by bin size and returns a plot of the probability for each bin in the flood or ebb tidal phase. Parameters ---------- directions: array-like Time-series of directions [degrees] speed: array-like Time-series of speeds [m/s] flood: float or int Principal component of flow in the flood direction [degrees] ebb: float or int Principal component of flow in the ebb direction [degrees] bin_size: float Speed bin size. Optional. Deaful = 0.1 m/s ax : matplotlib axes object Axes for plotting. If None, then a new figure with a single axes is used. Returns ------- ax: figure """ _check_inputs(directions, velocities, flood, ebb) if bin_size < 0: raise ValueError("bin_size must be greater than 0") if ax == None: fig, ax = plt.subplots(figsize=(12, 8)) isEbb = _flood_or_ebb(directions, flood, ebb) decimals = round(bin_size / 0.1) N_bins = int(round(velocities.max(), decimals) / bin_size) H, bins = np.histogram(velocities, bins=N_bins) H_ebb, bins1 = np.histogram(velocities[isEbb], bins=bins) H_flood, bins2 = np.histogram(velocities[~isEbb], bins=bins) p_ebb = H_ebb / H p_flood = H_flood / H center = (bins[:-1] + bins[1:]) / 2 width = 0.9 * (bins[1] - bins[0]) mask1 = np.ma.where(p_ebb >= p_flood) mask2 = np.ma.where(p_flood >= p_ebb) ax.bar( center[mask1], height=p_ebb[mask1], edgecolor="black", width=width, label="Ebb", color="blue", ) ax.bar( center, height=p_flood, edgecolor="black", width=width, alpha=1, label="Flood", color="orange", ) ax.bar( center[mask2], height=p_ebb[mask2], alpha=1, edgecolor="black", width=width, color="blue", ) plt.xlabel("Velocity [m/s]") plt.ylabel("Probability") plt.ylim(0, 1.0) plt.legend() plt.grid(linestyle=":") return ax
[docs] def tidal_phase_exceedance(directions, velocities, flood, ebb, bin_size=0.1, ax=None): """ Returns a stacked area plot of the exceedance probability for the flood and ebb tidal phases. Parameters ---------- directions: array-like Time-series of directions [degrees] velocities: array-like Time-series of speeds [m/s] flood: float or int Principal component of flow in the flood direction [degrees] ebb: float or int Principal component of flow in the ebb direction [degrees] bin_size: float Speed bin size. Optional. Deaful = 0.1 m/s ax : matplotlib axes object Axes for plotting. If None, then a new figure with a single axes is used. Returns ------- ax: figure """ _check_inputs(directions, velocities, flood, ebb) if bin_size < 0: raise ValueError("bin_size must be greater than 0") if ax == None: fig, ax = plt.subplots(figsize=(12, 8)) isEbb = _flood_or_ebb(directions, flood, ebb) s_ebb = velocities[isEbb] s_flood = velocities[~isEbb] F = exceedance_probability(velocities)["F"] F_ebb = exceedance_probability(s_ebb)["F"] F_flood = exceedance_probability(s_flood)["F"] decimals = round(bin_size / 0.1) s_new = np.arange( np.around(velocities.min(), decimals), np.around(velocities.max(), decimals) + bin_size, bin_size, ) f_total = interp1d(velocities, F, bounds_error=False) f_ebb = interp1d(s_ebb, F_ebb, bounds_error=False) f_flood = interp1d(s_flood, F_flood, bounds_error=False) F_total = f_total(s_new) F_ebb = f_ebb(s_new) F_flood = f_flood(s_new) F_max_total = np.nanmax(F_ebb) + np.nanmax(F_flood) ax.stackplot( s_new, F_ebb / F_max_total * 100, F_flood / F_max_total * 100, labels=["Ebb", "Flood"], ) plt.xlabel("velocity [m/s]") plt.ylabel("Probability of Exceedance") plt.legend() plt.grid(linestyle=":", linewidth=1) return ax