Source code for mhkit.wave.io.ndbc

import os
from collections import OrderedDict as _OrderedDict
from collections import defaultdict as _defaultdict
from io import BytesIO
import re
import requests
import zlib

import numpy as np
import pandas as pd
import pandas.errors
import xarray as xr

from bs4 import BeautifulSoup
from mhkit.utils.cache import handle_caching
from mhkit.utils import (
    convert_to_dataset,
    convert_to_dataarray,
    convert_nested_dict_and_pandas,
)


[docs] def read_file(file_name, missing_values=["MM", 9999, 999, 99], to_pandas=True): """ Reads a NDBC wave buoy data file (from https://www.ndbc.noaa.gov). Realtime and historical data files can be loaded with this function. Note: With realtime data, missing data is denoted by "MM". With historical data, missing data is denoted using a variable number of # 9's, depending on the data type (for example: 9999.0 999.0 99.0). 'N/A' is automatically converted to missing data. Data values are converted to float/int when possible. Column names are also converted to float/int when possible (this is useful when column names are frequency). Parameters ------------ file_name: string Name of NDBC wave buoy data file missing_value: list of values List of values that denote missing data to_pandas: bool (optional) Flag to output pandas instead of xarray. Default = True. Returns --------- data: pandas DataFrame or xarray Dataset Data indexed by datetime with columns named according to header row metadata: dict or None Dictionary with {column name: units} key value pairs when the NDBC file contains unit information, otherwise None is returned """ if not isinstance(file_name, str): raise TypeError(f"file_name must be of type str. Got: {type(file_name)}") if not isinstance(missing_values, list): raise TypeError( f"If specified, missing_values must be of type list. Got: {type(missing_values)}" ) if not isinstance(to_pandas, bool): raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}") # Open file and get header rows f = open(file_name, "r") header = f.readline().rstrip().split() # read potential headers units = f.readline().rstrip().split() # read potential units f.close() # If first line is commented, remove comment sign # if header[0].startswith("#"): header[0] = header[0][1:] header_commented = True else: header_commented = False # If second line is commented, indicate that units exist if units[0].startswith("#"): units_exist = True else: units_exist = False # Check if the time stamp contains minutes, and create list of column names # to parse for date if header[4] == "mm": parse_vals = header[0:5] date_format = "%Y %m %d %H %M" units = units[5:] # remove date columns from units else: parse_vals = header[0:4] date_format = "%Y %m %d %H" units = units[4:] # remove date columns from units # If first line is commented, manually feed in column names if header_commented: data = pd.read_csv( file_name, sep="\s+", header=None, names=header, comment="#", parse_dates=[parse_vals], ) # If first line is not commented, then the first row can be used as header else: data = pd.read_csv( file_name, sep="\s+", header=0, comment="#", parse_dates=[parse_vals] ) # Convert index to datetime date_column = "_".join(parse_vals) data["Time"] = pd.to_datetime(data[date_column], format=date_format) data.index = data["Time"].values # Remove date columns del data[date_column] del data["Time"] # If there was a row of units, convert to dictionary if units_exist: metadata = {column: unit for column, unit in zip(data.columns, units)} else: metadata = None # Convert columns to numeric data if possible, otherwise leave as string for column in data: data[column] = pd.to_numeric(data[column], errors="ignore") # Convert column names to float if possible (handles frequency headers) # if there is non-numeric name, just leave all as strings. try: data.columns = [float(column) for column in data.columns] except: data.columns = data.columns # Replace indicated missing values with nan data.replace(missing_values, np.nan, inplace=True) if not to_pandas: data = convert_to_dataset(data) return data, metadata
[docs] def available_data( parameter, buoy_number=None, proxy=None, clear_cache=False, to_pandas=True ): """ For a given parameter this will return a DataFrame or Dataset of years, station IDs and file names that contain that parameter data. Parameters ---------- parameter: string 'swden': 'Raw Spectral Wave Current Year Historical Data' 'swdir': 'Spectral Wave Current Year Historical Data (alpha1)' 'swdir2': 'Spectral Wave Current Year Historical Data (alpha1)' 'swr1': 'Spectral Wave Current Year Historical Data (r1)' 'swr2': 'Spectral Wave Current Year Historical Data (r2)' 'stdmet': 'Standard Meteorological Current Year Historical Data' 'cwind' : 'Continuous Winds Current Year Historical Data' buoy_number: string (optional) Buoy Number. 5-character alpha-numeric station identifier proxy: dict Proxy dict passed to python requests, (e.g. proxy_dict= {"http": 'http:wwwproxy.yourProxy:80/'}) to_pandas: bool (optional) Flag to output pandas instead of xarray. Default = True. Returns ------- available_data: pandas DataFrame or xarray Dataset DataFrame with station ID, years, and NDBC file names. """ if not isinstance(parameter, str): raise TypeError(f"parameter must be a string. Got: {type(parameter)}") if not isinstance(buoy_number, (str, type(None), list)): raise TypeError( f"If specified, buoy_number must be a string or list of strings. Got: {type(buoy_number)}" ) if not isinstance(proxy, (dict, type(None))): raise TypeError(f"If specified, proxy must be a dict. Got: {type(proxy)}") _supported_params(parameter) if isinstance(buoy_number, str): if not len(buoy_number) == 5: raise ValueError( "buoy_number must be 5-character" f"alpha-numeric station identifier. Got: {buoy_number}" ) elif isinstance(buoy_number, list): for buoy in buoy_number: if not len(buoy) == 5: raise ValueError( "Each value in the buoy_number list must be a 5-character" f"alpha-numeric station identifier. Got: {buoy_number}" ) if not isinstance(to_pandas, bool): raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}") # Generate a unique hash_params based on the function parameters hash_params = f"parameter:{parameter}_buoy_number:{buoy_number}_proxy:{proxy}" cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "mhkit", "ndbc") # Check the cache before making the request data, _, _ = handle_caching(hash_params, cache_dir, clear_cache_file=clear_cache) # no coverage bc in coverage runs we have already cached the data/ run this code if data is None: # pragma: no cover ndbc_data = f"https://www.ndbc.noaa.gov/data/historical/{parameter}/" try: response = requests.get(ndbc_data, proxies=proxy, timeout=30) response.raise_for_status() except requests.exceptions.Timeout: print("The request timed out") response = None except requests.exceptions.RequestException as error: print(f"An error occurred: {error}") response = None if response and response.status_code != 200: msg = f"request.get({ndbc_data}) failed by returning code of {response.status_code}" raise Exception(msg) filenames = pd.read_html(response.text)[0].Name.dropna() buoys = _parse_filenames(parameter, filenames) available_data = buoys.copy(deep=True) # Set year to numeric (makes year key non-unique) available_data["year"] = available_data.year.str.strip("b") available_data["year"] = pd.to_numeric(available_data.year.str.strip("_old")) if isinstance(buoy_number, str): available_data = available_data[available_data.id == buoy_number] elif isinstance(buoy_number, list): available_data = available_data[available_data.id == buoy_number[0]] for i in range(1, len(buoy_number)): data = available_data[available_data.id == buoy_number[i]] available_data = available_data.append(data) # Cache the result handle_caching(hash_params, cache_dir, data=available_data) else: available_data = data if not to_pandas: available_data = convert_to_dataset(available_data) return available_data
def _parse_filenames(parameter, filenames): """ Takes a list of available filenames as a series from NDBC then parses out the station ID and year from the file name. Parameters ---------- parameter: string 'swden' : 'Raw Spectral Wave Current Year Historical Data' 'swdir': 'Spectral wave data (alpha1)' 'swdir2': 'Spectral wave data (alpha2)' 'swr1': 'Spectral wave data (r1)' 'swr2': 'Spectral wave data (r2)' 'stdmet': 'Standard Meteorological Current Year Historical Data' 'cwind' : 'Continuous Winds Current Year Historical Data' filenames: Series List of compressed file names from NDBC Returns ------- buoys: DataFrame DataFrame with keys=['id','year','file_name'] """ if not isinstance(filenames, pd.Series): raise TypeError(f"filenames must be of type pd.Series. Got: {type(filenames)}") if not isinstance(parameter, str): raise TypeError(f"parameter must be a string. Got: {type(parameter)}") supported = _supported_params(parameter) file_seps = { "swden": "w", "swdir": "d", "swdir2": "i", "swr1": "j", "swr2": "k", "stdmet": "h", "cwind": "c", } file_sep = file_seps[parameter] filenames = filenames[filenames.str.contains(".txt.gz")] buoy_id_year_str = filenames.str.split(".", expand=True)[0] buoy_id_year = buoy_id_year_str.str.split(file_sep, n=1, expand=True) buoys = buoy_id_year.rename(columns={0: "id", 1: "year"}) expected_station_id_length = 5 buoys = buoys[buoys.id.str.len() == expected_station_id_length] buoys["filename"] = filenames return buoys
[docs] def request_data(parameter, filenames, proxy=None, clear_cache=False, to_pandas=True): """ Requests data by filenames and returns a dictionary of DataFrames or dictionary of Datasets for each filename passed. If filenames for a single buoy are passed then the yearly DataFrames in the returned dictionary (ndbc_data) are indexed by year (e.g. ndbc_data['2014']). If multiple buoy ids are passed then the returned dictionary is indexed by buoy id and year (e.g. ndbc_data['46022']['2014']). Parameters ---------- parameter: string 'swden' : 'Raw Spectral Wave Current Year Historical Data' 'swdir': 'Spectral wave data (alpha1)' 'swdir2': 'Spectral wave data (alpha2)' 'swr1': 'Spectral wave data (r1)' 'swr2': 'Spectral wave data (r2)' 'stdmet': 'Standard Meteorological Current Year Historical Data' 'cwind' : 'Continuous Winds Current Year Historical Data' filenames: pandas Series, pandas DataFrame, xarray DataArray, or xarray Dataset Data filenames on https://www.ndbc.noaa.gov/data/historical/{parameter}/ proxy: dict Proxy dict passed to python requests, (e.g. proxy_dict= {"http": 'http:wwwproxy.yourProxy:80/'}) to_pandas: bool (optional) Flag to output a dictionary of pandas objects instead of a dictionary of xarray objects. Default = True. Returns ------- ndbc_data: dict Dictionary of DataFrames/Datasets indexed by buoy and year. """ filenames = convert_to_dataarray(filenames) filenames = pd.Series(filenames) if not isinstance(parameter, str): raise TypeError(f"parameter must be a string. Got: {type(parameter)}") if not isinstance(proxy, (dict, type(None))): raise TypeError(f"If specified, proxy must be a dict. Got: {type(proxy)}") if not isinstance(to_pandas, bool): raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}") _supported_params(parameter) if not len(filenames) > 0: raise ValueError("At least 1 filename must be passed") # Define the path to the cache directory cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "mhkit", "ndbc") buoy_data = _parse_filenames(parameter, filenames) ndbc_data = _defaultdict(dict) for buoy_id in buoy_data["id"].unique(): buoy = buoy_data[buoy_data["id"] == buoy_id] years = buoy.year filenames = buoy.filename for year, filename in zip(years, filenames): # Create a unique filename based on the function parameters for caching hash_params = f"{buoy_id}_{parameter}_{year}_{filename}" cached_data, _, _ = handle_caching( hash_params, cache_dir, clear_cache_file=clear_cache ) if cached_data is not None: ndbc_data[buoy_id][year] = cached_data continue file_url = ( f"https://www.ndbc.noaa.gov/data/historical/{parameter}/{filename}" ) if proxy == None: response = requests.get(file_url) else: response = requests.get(file_url, proxies=proxy) try: data = zlib.decompress(response.content, 16 + zlib.MAX_WBITS) df = pd.read_csv(BytesIO(data), sep="\s+", low_memory=False) # catch when units are included below the header firstYear = df["MM"][0] if isinstance(firstYear, str) and firstYear == "mo": df = pd.read_csv( BytesIO(data), sep="\s+", low_memory=False, skiprows=[1] ) except zlib.error: msg = ( f"Issue decompressing the NDBC file {filename}" f"(id: {buoy_id}, year: {year}). Please request " "the data again." ) print(msg) except pandas.errors.EmptyDataError: msg = ( f"The NDBC buoy {buoy_id} for year {year} with " f"filename {filename} is empty or missing " "data. Please omit this file from your data " "request in the future." ) print(msg) else: ndbc_data[buoy_id][year] = df # Cache the data after processing it if it exists if year in ndbc_data[buoy_id]: handle_caching( hash_params, cache_dir, data=ndbc_data[buoy_id][year] ) if buoy_id and len(ndbc_data) == 1: ndbc_data = ndbc_data[buoy_id] if not to_pandas: ndbc_data = convert_nested_dict_and_pandas(ndbc_data) return ndbc_data
[docs] def to_datetime_index(parameter, ndbc_data, to_pandas=True): """ Converts the NDBC date and time information reported in separate columns into a DateTime index and removed the NDBC date & time columns. Parameters ---------- parameter: string 'swden': 'Raw Spectral Wave Current Year Historical Data' 'swdir': 'Spectral wave data (alpha1)' 'swdir2': 'Spectral wave data (alpha2)' 'swr1': 'Spectral wave data (r1)' 'swr2': 'Spectral wave data (r2)' 'stdmet': 'Standard Meteorological Current Year Historical Data' 'cwind': 'Continuous Winds Current Year Historical Data' ndbc_data: pandas DataFrame or xarray Dataset NDBC data in dataframe with date and time columns to be converted to_pandas: bool (optional) Flag to output pandas instead of xarray. Default = True. Returns ------- df_datetime: pandas DataFrame or xarray Dataset Dataframe with NDBC date columns removed, and datetime index """ if not isinstance(parameter, str): raise TypeError(f"parameter must be a string. Got: {type(parameter)}") if isinstance(ndbc_data, xr.Dataset): ndbc_data = ndbc_data.to_pandas() if not isinstance(ndbc_data, pd.DataFrame): raise TypeError( f"ndbc_data must be of type pd.DataFrame. Got: {type(ndbc_data)}" ) if not isinstance(to_pandas, bool): raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}") df_datetime = ndbc_data.copy(deep=True) df_datetime["date"], ndbc_date_cols = dates_to_datetime( df_datetime, return_date_cols=True ) df_datetime = df_datetime.drop(ndbc_date_cols, axis=1) df_datetime = df_datetime.set_index("date") if parameter in ["swden", "swdir", "swdir2", "swr1", "swr2"]: df_datetime.columns = df_datetime.columns.astype(float) if not to_pandas: df_datetime = convert_to_dataset(df_datetime) return df_datetime
[docs] def dates_to_datetime( data, return_date_cols=False, return_as_dataframe=False, to_pandas=True ): """ Takes a DataFrame/Dataset and converts the NDBC date columns (e.g. "#YY MM DD hh mm") to datetime. Returns a DataFrame/Dataset with the removed NDBC date columns a new ['date'] columns with DateTime Format. Parameters ---------- data: pandas DataFrame or xarray Dataset Dataframe with headers (e.g. ['YY', 'MM', 'DD', 'hh', {'mm'}]) return_date_col: Bool (optional) Default False. When true will return list of NDBC date columns return_as_dataFrame: bool Results returned as a DataFrame (useful for MHKiT-MATLAB) to_pandas: bool (optional) Flag to output pandas instead of xarray. Default = True. Returns ------- date: pandas Series or xarray DataArray Series with NDBC dates dropped and new ['date'] column in DateTime format ndbc_date_cols: list (optional) List of the DataFrame/Dataset columns headers for dates as provided by NDBC """ if isinstance(data, xr.Dataset): data = pd.DataFrame(data) if not isinstance(data, pd.DataFrame): raise TypeError(f"data must be of type pd.DataFrame. Got: {type(data)}") if not isinstance(return_date_cols, bool): raise TypeError( f"return_date_cols must be of type bool. Got: {type(return_date_cols)}" ) if not isinstance(to_pandas, bool): raise TypeError(f"to_pandas must be of type bool. Got: {type(to_pandas)}") df = data.copy(deep=True) cols = df.columns.values.tolist() try: minutes_loc = cols.index("mm") minutes = True except: df["mm"] = np.zeros(len(df)).astype(int).astype(str) minutes = False row_0_is_units = False year_string = [col for col in cols if col.startswith("Y")] if not year_string: year_string = [col for col in cols if col.startswith("#")] if not year_string: print(f"ERROR: Could Not Find Year Column in {cols}") year_string = year_string[0] year_fmt = "%Y" if str(df[year_string][0]).startswith("#"): row_0_is_units = True df = df.drop(df.index[0]) elif year_string[0] == "YYYY": year_string = year_string[0] year_fmt = "%Y" elif year_string[0] == "YY": year_string = year_string[0] year_fmt = "%y" parse_columns = [year_string, "MM", "DD", "hh", "mm"] df = _date_string_to_datetime(df, parse_columns, year_fmt) date = df["date"] if row_0_is_units: date = pd.concat([pd.Series([np.nan]), date]) del df if return_as_dataframe: date = pd.DataFrame(date) if not to_pandas: date = convert_to_dataset(date) elif not to_pandas: date = convert_to_dataarray(date) if return_date_cols: if minutes: ndbc_date_cols = [year_string, "MM", "DD", "hh", "mm"] else: ndbc_date_cols = [year_string, "MM", "DD", "hh"] return date, ndbc_date_cols return date
def _date_string_to_datetime(df, columns, year_fmt): """ Takes a NDBC df and creates a datetime from multiple columns headers by combining each column into a single string. Then the datetime method is applied given the expected format. Parameters ---------- df: DataFrame Dataframe with columns (e.g. ['YY', 'MM', 'DD', 'hh', 'mm']) columns: list list of strings for the columns to consider (e.g. ['YY', 'MM', 'DD', 'hh', 'mm']) year_fmt: str Specifies if year is 2 digit or 4 digit for datetime interpretation Returns ------- df: DataFrame The passed df with a new column ['date'] with the datetime format """ if not isinstance(df, pd.DataFrame): raise TypeError(f"df must be of type pd.DataFrame. Got: {type(df)}") if not isinstance(columns, list): raise TypeError(f"columns must be a list. Got: {type(columns)}") if not isinstance(year_fmt, str): raise TypeError(f"year_fmt must be a string. Got: {type(year_fmt)}") # Convert to str and zero pad for key in columns: df[key] = df[key].astype(str).str.zfill(2) df["date_string"] = df[columns[0]] for column in columns[1:]: df["date_string"] = df[["date_string", column]].apply( lambda x: "".join(x), axis=1 ) df["date"] = pd.to_datetime(df["date_string"], format=f"{year_fmt}%m%d%H%M") del df["date_string"] return df
[docs] def parameter_units(parameter=""): """ Returns an ordered dictionary of NDBC parameters with unit values. If no parameter is passed then an ordered dictionary of all NDBC parameterz specified unites is returned. If a parameter is specified then only the units associated with that parameter are returned. Note that many NDBC paramters report multiple measurements and in that case the returned dictionary will contain the NDBC measurement name and associated unit for all the measurements associated with the specified parameter. Optional parameter values are given below. All units are based on https://www.ndbc.noaa.gov/measdes.shtml. Parameters ---------- parameter: string (optional) 'adcp': 'Acoustic Doppler Current Profiler Current Year Historical Data' 'cwind': 'Continuous Winds Current Year Historical Data' 'dart': 'Water Column Height (DART) Current Year Historical Data' 'derived2': 'Derived Met Values' 'ocean' : 'Oceanographic Current Year Historical Data' 'rain' : 'Hourly Rain Current Year Historical Data' 'rain10': '10-Minute Rain Current Year Historical Data' 'rain24': '24-Hour Rain Current Year Historical Data' 'realtime2': 'Detailed Wave Summary (Realtime `.spec` data files only)' 'srad': 'Solar Radiation Current Year Historical Data' 'stdmet': 'Standard Meteorological Current Year Historical Data' 'supl': 'Supplemental Measurements Current Year Historical Data' 'swden': 'Raw Spectral Wave Current Year Historical Data' 'swdir': 'Spectral Wave Current Year Historical Data (alpha1)' 'swdir2': 'Spectral Wave Current Year Historical Data (alpha2)' 'swr1': 'Spectral Wave Current Year Historical Data (r1)' 'swr2': 'Spectral Wave Current Year Historical Data (r2)' Returns ------- units: dict Dictionary of parameter units """ if not isinstance(parameter, str): raise TypeError(f"parameter must be a string. Got: {type(parameter)}") if parameter == "adcp": units = { "DEP01": "m", "DIR01": "deg", "SPD01": "cm/s", } elif parameter == "cwind": units = { "WDIR": "degT", "WSPD": "m/s", "GDR": "degT", "GST": "m/s", "GTIME": "hhmm", } elif parameter == "dart": units = { "T": "-", "HEIGHT": "m", } elif parameter == "derived2": units = { "CHILL": "degC", "HEAT": "degC", "ICE": "cm/hr", "WSPD10": "m/s", "WSPD20": "m/s", } elif parameter == "ocean": units = { "DEPTH": "m", "OTMP": "degC", "COND": "mS/cm", "SAL": "psu", "O2%": "%", "O2PPM": "ppm", "CLCON": "ug/l", "TURB": "FTU", "PH": "-", "EH": "mv", } elif parameter == "rain": units = { "ACCUM": "mm", } elif parameter == "rain10": units = { "RATE": "mm/h", } elif parameter == "rain24": units = { "RATE": "mm/h", "PCT": "%", "SDEV": "-", } elif parameter == "realtime2": units = { "WVHT": "m", "SwH": "m", "SwP": "sec", "WWH": "m", "WWP": "sec", "SwD": "-", "WWD": "degT", "STEEPNESS": "-", "APD": "sec", "MWD": "degT", } elif parameter == "srad": units = { "SRAD1": "w/m2", "SRAD2": "w/m2", "SRAD3": "w/m2", } elif parameter == "stdmet": units = { "WDIR": "degT", "WSPD": "m/s", "GST": "m/s", "WVHT": "m", "DPD": "sec", "APD": "sec", "MWD": "degT", "PRES": "hPa", "ATMP": "degC", "WTMP": "degC", "DEWP": "degC", "VIS": "nmi", "PTDY": "hPa", "TIDE": "ft", } elif parameter == "supl": units = { "PRES": "hPa", "PTIME": "hhmm", "WSPD": "m/s", "WDIR": "degT", "WTIME": "hhmm", } elif parameter == "swden": units = {"swden": "(m*m)/Hz"} elif parameter == "swdir": units = {"swdir": "deg"} elif parameter == "swdir2": units = {"swdir2": "deg"} elif parameter == "swr1": units = {"swr1": ""} elif parameter == "swr2": units = {"swr2": ""} else: units = { "swden": "(m*m)/Hz", "PRES": "hPa", "PTIME": "hhmm", "WDIR": "degT", "WTIME": "hhmm", "DPD": "sec", "MWD": "degT", "ATMP": "degC", "WTMP": "degC", "DEWP": "degC", "VIS": "nmi", "PTDY": "hPa", "TIDE": "ft", "SRAD1": "w/m2", "SRAD2": "w/m2", "SRAD3": "w/m2", "WVHT": "m", "SwH": "m", "SwP": "sec", "WWH": "m", "WWP": "sec", "SwD": "-", "WWD": "degT", "STEEPNESS": "-", "APD": "sec", "RATE": "mm/h", "PCT": "%", "SDEV": "-", "ACCUM": "mm", "DEPTH": "m", "OTMP": "degC", "COND": "mS/cm", "SAL": "psu", "O2%": "%", "O2PPM": "ppm", "CLCON": "ug/l", "TURB": "FTU", "PH": "-", "EH": "mv", "CHILL": "degC", "HEAT": "degC", "ICE": "cm/hr", "WSPD": "m/s", "WSPD10": "m/s", "WSPD20": "m/s", "T": "-", "HEIGHT": "m", "GDR": "degT", "GST": "m/s", "GTIME": "hhmm", "DEP01": "m", "DIR01": "deg", "SPD01": "cm/s", } units = _OrderedDict(sorted(units.items())) return units
def _supported_params(parameter): """ There is a significant number of datasets provided by NDBC. There is specific data processing required for each type. Therefore this function throws an error for any data type not currently covered. Available Data: https://www.ndbc.noaa.gov/data/ https://www.ndbc.noaa.gov/historical_data.shtml Decription of Measurements: https://www.ndbc.noaa.gov/measdes.shtml Changes made to historical data: https://www.ndbc.noaa.gov/mods.shtml Parameters ---------- None Returns ------- msg: bool Whether the parameter is supported. """ if not isinstance(parameter, str): raise TypeError(f"parameter must be a string. Got: {type(parameter)}") supported = True supported_params = ["swden", "swdir", "swdir2", "swr1", "swr2", "stdmet", "cwind"] param = [param for param in supported_params if param == parameter] if not param: supported = False msg = [ "Currently parameters ['swden', 'swdir', 'swdir2', " + "'swr1', 'swr2', 'stdmet', 'cwind'] are supported. \n" + "If you would like to see more data types please \n" + " open an issue or submit a Pull Request on GitHub" ] raise Exception(msg[0]) return supported def _historical_parameters(): """ Names and description of all NDBC Historical Data. Available Data: https://www.ndbc.noaa.gov/data/ https://www.ndbc.noaa.gov/historical_data.shtml Decription of Measurements: https://www.ndbc.noaa.gov/measdes.shtml Changes made to historical data: https://www.ndbc.noaa.gov/mods.shtml Parameters ---------- None Returns ------- msg: dict Names and decriptions of historical parameters. """ parameters = { "adcp": "Acoustic Doppler Current Profiler Current Year Historical Data", "adcp2": "Acoustic Doppler Current Profiler Current Year Historical Data", "cwind": "Continuous Winds Current Year Historical Data", "dart": "Water Column Height (DART) Current Year Historical Data", "mmbcur": "Marsh-McBirney Current Measurements", "ocean": "Oceanographic Current Year Historical Data", "rain": "Hourly Rain Current Year Historical Data", "rain10": "10-Minute Rain Current Year Historical Data", "rain24": "24-Hour Rain Current Year Historical Data", "srad": "Solar Radiation Current Year Historical Data", "stdmet": "Standard Meteorological Current Year Historical Data", "supl": "Supplemental Measurements Current Year Historical Data", "swden": "Raw Spectral Wave Current Year Historical Data", "swdir": "Spectral Wave Current Year Historical Data (alpha1)", "swdir2": "Spectral Wave Current Year Historical Data (alpha2)", "swr1": "Spectral Wave Current Year Historical Data (r1)", "swr2": "Spectral Wave Current Year Historical Data (r2)", "wlevel": "Tide Current Year Historical Data", } return parameters # directional
[docs] def request_directional_data(buoy, year): """ Request the directional spectrum data and return an `xarray.Dataset` containing all 5 variables. The NDBC historical data is organized into files based on buoy number, year, and parameter. For a given buoy number and year, the five files—corresponding to the 5 parameters NDBC uses to describe directional wave spectrum—are fetched and processed. Parameters ---------- buoy: string Buoy Number. Five character alpha-numeric station identifier. year: int Four digit year. Returns ------- ndbc_data: xr.Dataset Dataset containing the five parameter data indexed by frequency and date. """ if not isinstance(buoy, str): raise TypeError(f"buoy must be a string. Got: {type(buoy)}") if not isinstance(year, int): raise TypeError(f"year must be an int. Got: {type(year)}") directional_parameters = ["swden", "swdir", "swdir2", "swr1", "swr2"] seps = { "swden": "w", "swdir": "d", "swdir2": "i", "swr1": "j", "swr2": "k", } data_dict = {} for param in directional_parameters: file = f"{buoy}{seps[param]}{year}.txt.gz" raw_data = request_data( param, pd.Series( [ file, ] ), )[str(year)] pd_data = to_datetime_index(param, raw_data) xr_data = xr.DataArray(pd_data) xr_data = xr_data.astype(float).rename( { "dim_1": "frequency", } ) if param in ["swr1", "swr2"]: xr_data = xr_data / 100.0 xr_data.frequency.attrs = { "units": "Hz", "long_name": "frequency", "standard_name": "f", } xr_data.date.attrs = { "units": "", "long_name": "datetime", "standard_name": "t", } data_dict[param] = xr_data data_dict["swden"].attrs = { "units": "m^2/Hz", "long_name": "omnidirecational spectrum", "standard_name": "S", "description": "Omnidirectional *sea surface elevation variance (m^2)* spectrum (/Hz).", } data_dict["swdir"].attrs = { "units": "deg", "long_name": "mean wave direction", "standard_name": "α1", "description": "Mean wave direction.", } data_dict["swdir2"].attrs = { "units": "deg", "long_name": "principal wave direction", "standard_name": "α2", "description": "Principal wave direction.", } data_dict["swr1"].attrs = { "units": "", "long_name": "coordinate r1", "standard_name": "r1", "description": "First normalized polar coordinate of the Fourier coefficients (nondimensional).", } data_dict["swr2"].attrs = { "units": "", "long_name": "coordinate r2", "standard_name": "r2", "description": "Second normalized polar coordinate of the Fourier coefficients (nondimensional).", } return xr.Dataset(data_dict)
def _create_spectrum(data, frequencies, directions, name, units): """ Create an xarray.DataArray for storing spectrum data with correct dimensions, coordinates, names, and units. Parameters ---------- data: np.ndarray Spectrum values. Size number of frequencies x number of directions. frequencies: np.ndarray One-dimensional array of frequencies in Hz. directions: np.ndarray One-dimensional array of wave directions in degrees. name: string Name of the (integral) quantity the spectrum is for. units: string Units of the (integral) quantity the spectrum is for. Returns ------- spectrum: xr.Dataset DataArray containing the spectrum values indexed by frequency and wave direction. """ if not isinstance(data, np.ndarray): raise TypeError(f"data must be of type np.ndarray. Got: {type(data)}") if not isinstance(frequencies, np.ndarray): raise TypeError( f"frequencies must be of type np.ndarray. Got: {type(frequencies)}" ) if not isinstance(directions, np.ndarray): raise TypeError( f"directions must be of type np.ndarray. Got: {type(directions)}" ) if not isinstance(name, str): raise TypeError(f"name must be of type string. Got: {type(name)}") if not isinstance(units, str): raise TypeError(f"units must be of type string. Got: {type(units)}") msg = ( f"data has wrong shape {data.shape}, " + f"expected {(len(frequencies), len(directions))}" ) if not data.shape == (len(frequencies), len(directions)): raise ValueError(msg) direction_attrs = { "units": "deg", "long_name": "wave direction", "standard_name": "direction", } frequency_attrs = { "units": "Hz", "long_name": "frequency", "standard_name": "f", } spectrum = xr.DataArray( data, coords={ "frequency": ("frequency", frequencies, frequency_attrs), "direction": ("direction", directions, direction_attrs), }, attrs={ "units": f"{units}/Hz/deg", "long_name": f"{name} spectrum", "standard_name": "spectrum", "description": f"*{name} ({units})* spectrum (/Hz/deg).", }, ) return spectrum
[docs] def create_spread_function(data, directions): """ Create the spread function from the 4 relevant NDBC parameter data. Return as an xarray.DataArray indexed by frequency and wave direction. Parameters ---------- data: xr.Dataset Dataset containing the four NDBC parameter data indexed by frequency. directions: np.ndarray One-dimensional array of wave directions in degrees. Returns ------- spread: xr.DataArray DataArray containing the spread function values indexed by frequency and wave direction. """ if not isinstance(data, xr.Dataset): raise TypeError(f"data must be of type xr.Dataset. Got: {type(data)}") if not isinstance(directions, np.ndarray): raise TypeError( f"directions must be of type np.ndarray. Got: {type(directions)}" ) r1 = data["swr1"].data.reshape(-1, 1) r2 = data["swr2"].data.reshape(-1, 1) a1 = data["swdir"].data.reshape(-1, 1) a2 = data["swdir2"].data.reshape(-1, 1) a = directions.reshape(1, -1) spread = ( 1 / np.pi * (0.5 + r1 * np.cos(np.deg2rad(a - a1)) + r2 * np.cos(2 * np.deg2rad(a - a2))) ) spread = _create_spectrum( spread, data.frequency.values, directions, name="Spread", units="1" ) return spread
[docs] def create_directional_spectrum(data, directions): """ Create the spectrum from the 5 relevant NDBC parameter data. Return as an xarray.DataArray indexed by frequency and wave direction. Parameters ---------- data: xr.Dataset Dataset containing the five NDBC parameter data indexed by frequency. directions: np.ndarray One-dimensional array of wave directions in degrees. Returns ------- spectrum: xr.DataArray DataArray containing the spectrum values indexed by frequency and wave direction. """ if not isinstance(data, xr.Dataset): raise TypeError(f"data must be of type xr.Dataset. Got: {type(data)}") if not isinstance(directions, np.ndarray): raise TypeError( f"directions must be of type np.ndarray. Got: {type(directions)}" ) spread = create_spread_function(data, directions).values omnidirectional_spectrum = data["swden"].data.reshape(-1, 1) spectrum = omnidirectional_spectrum * spread spectrum = _create_spectrum( spectrum, data.frequency.values, directions, name="Elevation variance", units="m^2", ) return spectrum
[docs] def get_buoy_metadata(station_number: str): """ Fetches and parses the metadata of a National Data Buoy Center (NDBC) station from https://www.ndbc.noaa.gov. Extracts information such as provider, buoy type, latitude, longitude, and other metadata from the station's webpage. Parameters ------------ station_number: string The station number (ID) of the NDBC buoy Returns --------- data: dict A dictionary containing metadata of the buoy with keys representing the information type and values containing the corresponding data """ # Define the URL for the station url = f"https://www.ndbc.noaa.gov/station_page.php?station={station_number}" # Fetch the page content response = requests.get(url) content = response.content # Parse the HTML soup = BeautifulSoup(content, "html.parser") # Find the title element title_element = soup.find("h1") # Extract the title (remove the trailing image and whitespace) title = title_element.get_text(strip=True).split("\n")[0] # Check if the title element exists if title == "Station not found": raise ValueError(f"Invalid or nonexistent station number: {station_number}") # Save buoy name to a dictionary data = {} data["buoy"] = title # Find the specific div containing the buoy metadata metadata_div = soup.find("div", id="stn_metadata") # Extract the metadata lines = metadata_div.p.text.split("\n") line_count = 1 for line in lines: line = line.strip() if line.startswith("<b>"): line = line[3:] # Line should be the data provider if line_count == 1: data["provider"] = line # Line 2 should be the buoy type elif line_count == 2: data["type"] = line # Special case look for lat/long elif re.match(r"\d+\.\d+\s+[NS]\s+\d+\.\d+\s+[EW]", line): lat, lon = line.split(" ", 3)[0:3:2] data["lat"] = lat.strip() data["lon"] = lon.strip() # Split key value pairs on colon elif ":" in line: key, value = line.split(":", 1) data[key.strip()] = value.strip() # Catch all other lines as keys with empty values elif line: data[line] = "" line_count += 1 return data