Loads Module
The loads module contains a set of functions to calculate quantities of interest for mechanical loads assessments.
Note
The names of the functions below are of the convention path.path.function
. Only the function name is used when calling the function in MATLAB. For example, to call on mhkit.wave.io.read_NDBC_file
simply use read_NDBC_file
.
General
The graphics submodule contains functions to compute loads related metrics.
Functions |
Description |
---|---|
|
Bins calculated statistics against data signal (or channel) according to IEC TS 62600-3:2020 ED1. |
|
Calculates the damage equivalent load of a single data signal (or channel) based on IEC TS 62600-3:2020 ED1. |
|
Transfer function for deriving blade flap and edge moments using blade matrix. |
- mhkit.loads.general.damage_equivalent_load(data_signal, m, options)
Calculates the damage equivalent load of a single data signal (or channel) based on IEC TS 62600-3:2020 ED1. 4-point rainflow counting algorithm from fatpack module is based on the following resources:
C. Amzallag et. al. Standardization of the rainflow counting method for fatigue analysis. International Journal of Fatigue, 16 (1994) 287-293 ISO 12110-2, Metallic materials - Fatigue testing - Variable amplitude fatigue testing.
G. Marsh et. al. Review and application of Rainflow residue processing techniques for accurate fatigue damage estimation. International Journal of Fatigue, 82 (2016) 757-765
- Parameters:
data_signal (
vector
) – Data signal being analyzedm (
double or int
) – Fatigue slope factor of materialbin_num (
int (optional)
) – Number of bins for rainflow counting method (minimum=100) to call: get_DELs(data,chan_info,”bin_num”,binNum)data_length (
double or int (optional)
) – Length of data in sec. Default for 1Hz is 600 seconds for 10min data to call: get_DELs(data,chan_info,”data_length”,t)
- Returns:
DEL (Structure) – Damage equivalent load of signal
- mhkit.loads.general.bin_statistics(data, bin_against, bin_edges, varargin)
Bins calculated statistics against data signal (or channel) according to IEC TS 62600-3:2020 ED1.
- Parameters:
data (
Strucutre or Table with handles- data.data and data.time
) – data.data contains a vector or matrix containing time-series statistics of variablesbin_against (
vector
) – Data signal to bin data against (ie. current speed)bin_edges (
vector
) – Bin edges with consistent step size.data_signal (
cell array (optional)
) – List of data signal(s) to bin, default = all data signals
- Returns:
bins (structure)
bins.averages = means of each bin
bins.std = standard deviation of each bin
- mhkit.loads.general.blade_moments(blade_coefficients, flap_offset, flap_raw, edge_offset, edge_raw)
Transfer function for deriving blade flap and edge moments using blade matrix.
- Parameters:
blade_coefficients (
vector
) – Derived blade calibration coefficients listed in order of D1, D2, D3, D4flap_offset (
double or int
) – Derived offset of raw flap signal obtained during calibration processflap_raw (
vector
) – Raw strain signal of blade in the flapwise directionedge_offset (
double or int
) – Derived offset of raw edge signal obtained during calibration processedge_raw (
vector
) – Raw strain signal of blade in the edgewise direction
- Returns:
M_flap (vector) – Blade flapwise moment in SI units
M_edge (vector) – Blade edgewise moment in SI units
Graphics
The graphics submodule contains functions to plot loads data and related metrics.
The functions are designed to work in parallel with the general
submodule.
Functions |
Description |
---|---|
|
Plot showing standard raw statistics of variable |
|
Plot showing standard binned statistics of single variable |
- mhkit.loads.graphics.plot_bin_statistics(bin_centers, bin_mean, bin_max, bin_min, bin_mean_std, bin_max_std, bin_min_std, options)
Plot showing standard binned statistics of single variable
- Parameters:
bin_centers (
vector
) – x-axis bin center valuesbin_mean (
vector
) – Binned mean statistical values of variablebin_max (
vector
) – Binned max statistical values of variablebin_min (
vector
) – Binned min statistical values of variablebin_mean_std (
vector
) – Standard deviations of mean binned statisticsbin_max_std (
vector
) – Standard deviations of max binned statisticsbin_min_std (
vector
) – Standard deviations of min binned statisticsxlabel (
string (optional)
) – x-axis lable for the plot to call: binplotter(bcenters,bmean,bmax,bmin,bstdmean,bstdmax,bstdmin,”xlable”,xlable)ylabel (
string (optional)
) – y-axis lable for the plot to call: binplotter(bcenters,bmean,bmax,bmin,bstdmean,bstdmax,bstdmin,”ylable”,ylable)title (
string (optional)
) – title for the plot to call: binplotter(bcenters,bmean,bmax,bmin,bstdmean,bstdmax,bstdmin,”title”,title)savepath (
string (optional)
) – path and filename to save figure. to call: binplotter(bcenters,bmean,bmax,bmin,bstdmean,bstdmax,bstdmin,”savepath”,savepath)
- Returns:
figure (figure)
- mhkit.loads.graphics.plot_statistics(x, y_mean, y_min, y_max, options)
Plot showing standard raw statistics of variable
- Parameters:
x (
vector
) – vector of x-axis valuesy_mean (
vector
) – Vector of mean valuesy_max (
vector
) – Vector of max valuesy_min (
vector
) – Vector of min valuesy_stdev (
vector (optional)
) – Vector of stand drviations to call: statplotter(x,y_mean,y_max,y_min,”y_stdev”,vstdev)xlabel (
string (optional)
) – x-axis lable for the plot to call: statplotter(x,y_mean,y_max,y_min,”xlable”,xlable)ylabel (
string (optional)
) – y-axis lable for the plot to call: statplotter(x,y_mean,y_max,y_min,”ylable”,ylable)title (
string (optional)
) – title for the plot to call: statplotter(x,y_mean,y_max,y_min,”title”,title)savepath (
string (optional)
) – path and filename to save figure. to call: statplotter(x,y_mean,y_max,y_min,”savepath”,savepath)
- Returns:
figure (figure) – scatter plot of statistics